袁东明、张丽颖作者

基于人工智能的三维传感网空间定位技术

摘要

随着基于用户位置信息的相关技术的应用和发展,位置服务(LBS)已经成为人们日常工作、生活所必须的一项基本服务需求,尤其在大型复杂的室内环境中,如博物馆、机场、超市、医院、地下矿井等区域,人们对位置服务有迫切需求。传统的定位方法如全球定位系统(GPS)只能解决在室外空间中进行准确定位的问题,然而,在占人类日常生活时间80%的室内环境中,由于建筑物遮挡和多径效应的影响,室外定位系统则显得无能无力[2]。

因此,在复杂信道条件下,如何能够准确、可靠地提供室内的位置服务显得尤为重要和迫切。面向需求越来越迫切的室内位置服务,基于人工智能的三维传感网室内空间定位技术发展迅速,是移动互联时代的研究热点[1],逐步在各行各业发挥作用,给人们的日常生活带来了一定的影响。本文对基于人工智能定位技术的研究背景和研究现状进行了分析与总结,首先详细介绍了目前基于人工智能的三维传感网室内空间定位技术的技术原理与关键技术,然后提出了我们对于基于人工智能室内定位的创造性解决方案,最后总结三维传感网室内空间定位技术的现状和发展前景。

关键词:位置服务,无线传感网,室内定位,3D定位,人工智能

第一章 三维传感网空间定位技术定义与技术原

在移动互联网迅速发展和位置服务应用需求的推动下,当前室内定位技术处于较快的发展阶段,研究者们提出了众多室内定位技术的理论与方法。定位技术可以分为室外定位技术和室内定位技术两种,在室外环境下,全球定位系统(GPS)、北斗定位系统(BDS)等全球导航卫星系统(GNSS)为用户提供米级的位置服务,基本解决了在室外空间中进行准确定位的问题,并在日常生活中得到了广泛的应用。利用室外无限定位系统,人们可以实现大范围的定位,比如船舶远洋、飞机引航以及汽车导航等。然而,在占人类日常生活时间80%的室内环境中,由于建筑物遮挡和多径效应的影响,室外定位系统则显得无能无力[2]。因为信号穿透众多的建筑物衰减严重,加之室内环境复杂,信号在室内传播时受障碍物的影响,会引起多径效应、阴影遮挡及噪声干扰等,

1.1 典型的三维传感空间无线定位场景图

这些都将导致定位精度大大降低,甚至出现大片定位盲区。因此室内环境下的小范围、高精度定位需要借助于室内无线定位技术,图 1.1 给出了典型的室内无线定位场景图。与此同时,传统的定位技术多是基于二维空间的定位,只能给出经度和纬度信息,而对于精确的高度信息,则很难提供。

因此,三维传感网室内空间定位技术成为专家学者的研究重点。三维传感网室内空间定位技术指的是在三维空间内,通过蓝牙、红外线、RFID、WIFI、超宽带、超声波等室内定位技术及应用系统,基于到达时间(TOA)、基于到达时间差(TDOA)、基于信号到达角度(AOA)、基于信号相位差以及基于接收信号强度(RSSI)等信息,给出精确的位置信息或者判断是否位于某一房间、仓库等区域的定位技术

专业用户独享

本文为机器之心深度精选内容,专业认证后即可阅读全文
开启专业认证
入门定位技术k近邻算法贝叶斯网络神经网络
4
相关数据
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

高斯分布技术

正态分布是一个非常常见的连续概率分布。由于中心极限定理(Central Limit Theorem)的广泛应用,正态分布在统计学上非常重要。中心极限定理表明,由一组独立同分布,并且具有有限的数学期望和方差的随机变量X1,X2,X3,...Xn构成的平均随机变量Y近似的服从正态分布当n趋近于无穷。另外众多物理计量是由许多独立随机过程的和构成,因而往往也具有正态分布。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

室内定位技术

在室内环境无法使用卫星定位时,使用室内定位技术作为卫星定位的辅助定位,解决卫星信号到达地面时较弱、不能穿透建筑物的问题。最终定位物体当前所处的位置。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

数据管理技术

数据管理是利用计算机硬件和软件技术对数据进行有效的收集、存储、处理和应用的过程,其目的在于充分有效地发挥数据的作用。

数据库技术

数据库,简而言之可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据运行新增、截取、更新、删除等操作。 所谓“数据库”系以一定方式储存在一起、能予多个用户共享、具有尽可能小的冗余度、与应用程序彼此独立的数据集合。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

特征工程技术

特征工程是利用数据所在领域的相关知识来构建特征,使得机器学习算法发挥其最佳的过程。它是机器学习中的一个基本应用,实现难度大且代价高。采用自动特征工程方法可以省去采用人工特征工程的需求。Andrew Ng 说“挖掘特征是困难、费时且需要专业知识的事,应用机器学习其实基本上是在做特征工程。”

聚类分析技术

聚类分析(CA)是一种典型的无监督学习方法,这种方法是根据对象的特点将它们分成不同的组。K-均值是应用最广泛的聚类方法,其它方法还包括 k-Medoids、分层聚类和 DBSCAN。期望最大化法(EM)也是聚类分析的一种解决方案。聚类分析在数据挖掘、市场调研、异常值检测等许多领域都有应用。另外,降维技术也是一类类似于聚类分析的无监督学习方法,其典型的代表有主成分分析(PCA)、线性判别分析和 Isomap。

支持向量机技术

在机器学习中,支持向量机是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

word2vec技术

Word2vec,为一群用来产生词向量的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,词的顺序是不重要的。 训练完成之后,word2vec模型可用来映射每个词到一个向量,可用来表示词对词之间的关系。该向量为神经网络之隐藏层。 Word2vec依赖skip-grams或连续词袋(CBOW)来建立神经词嵌入。Word2vec为托马斯·米科洛夫(Tomas Mikolov)在Google带领的研究团队创造。该算法渐渐被其他人所分析和解释。

定位技术技术

通常是指机器人领域的定位技术,see SLAM for details

贝叶斯网络技术

贝叶斯网络(Bayesian network),又称信念网络或是有向无环图模型,是一种概率图型模型。例如,贝叶斯网络可以代表疾病和症状之间的概率关系。 鉴于症状,网络可用于计算各种疾病存在的概率。

全球定位系统技术

全球定位系统(Global Positioning System,通常简称GPS)是美国国防部研制的一种全天候的,空间基准的导航系统,可满足位于全球任何地方或近地空间的军事用户连续地精确地确定三位位置和三位运动及时间的需要。它是一个中距离圆型轨道卫星导航系统。

聚类技术

将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。

暂无评论
暂无评论~