Aakash N S作者

PyTorch进阶之路(一):张量与梯度

完整系列教程包括:

  1. PyTorch 基础:张量&梯度(本文)

  2. 线性回归 & 梯度下降:https://medium.com/jovian-io/linear-regression-with-pytorch-3dde91d60b50

  3. 用 Logistic 回归进行分类:https://medium.com/jovian-io/image-classification-using-logistic-regression-in-pytorch-ebb96cc9eb79

  4. 未完待续.. (神经网络、CNN、RNN、GAN 等)

本系列教程旨在让用户更好地利用 PyTorch 学习深度学习神经网络。本文将介绍 PyTorch 模型的基本构件:张量和梯度。

系统设置

本教程采用代码优先的方法来学习 PyTorch,你应该尝试自己运行和实验代码。我们将使用 Python 的 Anaconda 分布来安装代码库并管理虚拟环境。对于交互式编码和实验,我们将使用 Jupyter notebook。本系列所有教程的 Jupyter notebook 都可从 Jovian(Jupyter 的共享协作平台)上获取。本文的 notebook 可以从以下地址获得:https://jvn.io/aakashns/e5cfe043873f4f3c9287507016747ae5

通过在 Jupyter 内部直接运行单个命令,Jovian 使得在云端共享 Jupyter notebook 变得很容易。它还可以捕获你运行 notebook 所需的 Python 环境和库,因此任何人(包括你自己)都能复现你的研究。

专业用户独享

本文为机器之心深度精选内容,专业认证后即可阅读全文
开启专业认证
入门梯度张量PyTorch
111
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

数据分析技术

数据分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 数据分析可以处理大量数据,并确定这些数据最有用的部分。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

导数技术

导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x_0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x_0) 或 df(x_0)/dx。

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

线性回归技术

在现实世界中,存在着大量这样的情况:两个变量例如X和Y有一些依赖关系。由X可以部分地决定Y的值,但这种决定往往不很确切。常常用来说明这种依赖关系的最简单、直观的例子是体重与身高,用Y表示他的体重。众所周知,一般说来,当X大时,Y也倾向于大,但由X不能严格地决定Y。又如,城市生活用电量Y与气温X有很大的关系。在夏天气温很高或冬天气温很低时,由于室内空调、冰箱等家用电器的使用,可能用电就高,相反,在春秋季节气温不高也不低,用电量就可能少。但我们不能由气温X准确地决定用电量Y。类似的例子还很多,变量之间的这种关系称为“相关关系”,回归模型就是研究相关关系的一个有力工具。

梯度下降技术

梯度下降是用于查找函数最小值的一阶迭代优化算法。 要使用梯度下降找到函数的局部最小值,可以采用与当前点的函数梯度(或近似梯度)的负值成比例的步骤。 如果采取的步骤与梯度的正值成比例,则接近该函数的局部最大值,被称为梯度上升。

OpenCV技术

OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。

Jupyter技术

Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。 Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等 。

推荐文章
国内用户使用conda安装前最好添加一下国内源~(类似npm的淘宝源)