苏克1900作者第2大脑来源

入门必看 | 大佬们推荐的Python书单汇总

此文主要针对想入门 Python 但不知道看什么书好和有选择纠结症的童鞋,大佬们可绕道。

转眼也到了年终,这一期换个话题,围绕这几个问题:"学习 Python 该看哪些书?不同的书该怎么看?按照什么样的顺序看?",来聊一聊如何入门 Python,为了更有说服性一些,这里我把入门时看过的一些大佬推荐的书单进行了汇总,最后结合我的学习路径谈谈怎么读书。

半年前,Python 对我来说就是谜一样的东西,根本不知道如何下手、从何处下手,整天像无头苍蝇一样到处找资源,个把月过去了还没找到 Python 大门在哪儿,主要是花了很多的时间在纠结"该学习 Python 还是 R、学习 Python3 还是 Python 2 、看什么入门书最合适?"这些问题。知乎、豆瓣、CSDN、各大佬的公众号搜罗逛了一圈下来,只明确了前两个问题,就是要学习 Python,而且是 Python3,但对于看什么书,陷入了纠结迟迟下不了手。

现在看来,这应该是属于必经的过程,当涉足一个陌生的学习领域,对什么都不了解,即使别人给的建议再对,也会掂量犹豫几下。慢慢地,我开始进行总结,把一些大佬推荐的入门书籍文章进行汇总对比,然后就发现有些书是都在推荐的,于是决定重点就看这些书,这样才算慢慢摸到 Python 的大门。

话不多说,下面就分享 5 位大佬推荐的书单,除了入门书,还包括数据分析数据挖掘机器学习等方面,可以说是非常全面。

刘志军 (Python 之禅 作者)

刘志军是位不折不扣的 Python 大佬,他博客中的 Python 文章最早可以追溯到 2013 年。

leoxin (菜鸟学 Python 作者)

辛哥爬取分析了豆瓣 Python 相关的 1000 多本书籍,从各个角度找到了最受欢迎的书目,然后给出了自己的推荐。

刘顺祥 (数据分析 1480 作者)

刘顺祥大佬的公众号干货很多,入门时学习到很多。

秦路 (七周成为数据分析师课程作者)

秦路大佬在天善智能社区开设的《七周成为数据分析师》课程非常棒,他的推荐也非常值得参考。

王大伟 (Python爱好者作者)

王大伟大佬写的文章非常有趣,我看了他的几篇关于类(Class) 的文章后才彻底搞懂类是怎么回事。

以上就是 5 位大佬的推荐,想必你心里大概有个谱了,下面再说说我看过的一些书,然后分享一下我的入门路径。

我都看了哪些书

你可能注意到了,以上推荐了少说也有好几十本书,范围还是有点大,就算都是值得看的书,也没么多时间精力都去看,所以上面只是入门 Python 的第一个步骤,即筛选书的范围,还有更为重要的两个步骤。

第一,首先要明确你学 Python 的目的。也就是你想学了去干嘛,是做爬虫、数据分析挖掘、机器学习、web 开发还是什么其他的,虽说不同的方向都需要有 Python 基础,但对 Python 的基础也是有所侧重,只有确定一个方向才可以进一步筛选书和书中章节的范围。

第二,确定了书的范围后,要琢磨好怎么去看每一本书、以什么样的顺序去看书。不然,同时看好几本书,每一本都从头开始看,坚持不了几天就会放弃。

下面以我入门的过程来具体说一下。

由于我此前是零编程基础,helloworld 都不会打的那种,上知乎看了几个 Python 入门的回答后,觉得用 Python 做数据分析这个方向不错,加上我此前学 Excel 时就对数据分析比较感兴趣,所以就确定了这个方向,但很快就发现行不通,因为我连基本的 Python 操作都不会,处处卡壳,时间都花在抠一个个的小问题上去了,折腾到最后也没太大兴趣去分析了,而且数据分析本身是有一套理论方法的,我更不会,如果同时学 Python 操作和分析方法,比较耗费精力,显然不可取,所以就放弃直接学数据分析这个想法。

然后我选了另外一条路,就是爬虫,因为基础的爬虫比数据分析简单,学习曲线不陡,而且爬虫比较有意思,写出来别人也更愿意看,进一步了解到初步的爬虫学习主要学几个爬虫类库、网页解析提取库、框架这几块就行了,这样一下就缩小了书的选择范围和内容范围。

至此,我就选择了"Python 基础——爬虫——数据分析"这样一条路线。

首先,我选择了《深入浅出 Python 》这本书作为入门的第一本书,该书浅显易懂,注释详尽,对新手很友好。接着,我又大致过了一遍《Python 编程从入门到实践》,前面几章写得非常实用,这样对 Python 就有了一个大致了解。

接着,便开始上手爬虫,但爬虫类的书非常少,起先只找到两本,一本是国外的《Python 网络数据采集》,书不厚,看了后大致了解了:爬虫是怎么一回事、爬虫能做什么、要会哪些东西等这几个问题,另一本是韦玮老师的《精通 Python 网络爬虫》,这本书当时觉得还不错,有很多实操案例,但是理论部分欠缺一些。

后来偶然搜到了崔庆才大佬的爬虫文章,很赞,果断就买了他刚出的《Python3 网络爬虫实战》这本书,由此算是找到了爬虫方向。

通过爬虫把数据爬下来后就开始尝试一些简单的分析,但发现很多操作根本不熟练,于是采取了两种方法去学习,首先是谷歌解决实际问题,然后闲的时候翻看了《利用 Python 进行数据分析》、《流畅的 python》、《 Python Cookbook》这几本书,算是系统地巩固了一下相关知识。

就这样,几个月下来,练习了 10 个左右的爬虫,自认为算是入门了 Python 爬虫和数据分析

以上就是本期的推荐,如果对里面的书感兴趣的话可以去找来看看。

本文完。

THU数据派
THU数据派

THU数据派"基于清华,放眼世界",以扎实的理工功底闯荡“数据江湖”。发布全球大数据资讯,定期组织线下活动,分享前沿产业动态。了解清华大数据,敬请关注姐妹号“数据派THU”。

入门机器学习数据挖掘数据分析Python
8
相关数据
数据分析技术

数据分析是一类统计方法,其主要特点是多维性和描述性。有些几何方法有助于揭示不同的数据之间存在的关系,并绘制出统计信息图,以更简洁的解释这些数据中包含的主要信息。其他一些用于收集数据,以便弄清哪些是同质的,从而更好地了解数据。 数据分析可以处理大量数据,并确定这些数据最有用的部分。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

学习曲线技术

在机器学习领域,学习曲线通常是表现学习准确率随着训练次数/时长/数据量的增长而变化的曲线

数据挖掘技术

数据挖掘(英语:data mining)是一个跨学科的计算机科学分支 它是用人工智能、机器学习、统计学和数据库的交叉方法在相對較大型的数据集中发现模式的计算过程。 数据挖掘过程的总体目标是从一个数据集中提取信息,并将其转换成可理解的结构,以进一步使用。

知乎机构

知乎作为中文互联网知名知识内容平台,致力于构建一个人人都可接入的知识分享网络,让人们便捷地与世界分享知识、经验和见解,高效获得可信赖的解答。 目前,知乎已经覆盖「问答」社区、一站式知识服务平台「知乎大学」、短内容分享功能「想法」等一系列产品和服务,并建立了包括音频、视频在内的多元媒介形式。截止 2018 年 8 月底,知乎用户数已突破 2 亿,回答数超过 1.2 亿。未来,知乎进一步加大对 AI 技术和应用的投入,构建一个由 AI 驱动的智能社区,让知识普惠每一个人。

https://www.zhihu.com
推荐文章
暂无评论
暂无评论~