张俊林作者知乎转自

放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较

作者 | 张俊林,中国中文信息学会理事,目前在新浪微博 AI Lab 担任资深算法专家。在此之前,张俊林曾经在阿里巴巴任资深技术专家,以及在百度和用友担任技术经理及技术总监等职务。同时他是技术书籍《这就是搜索引擎:核心技术详解》(该书荣获全国第十二届输出版优秀图书奖)、《大数据日知录:架构与算法》的作者。

在辞旧迎新的时刻,大家都在忙着回顾过去一年的成绩(或者在灶台前含泪数锅),并对 2019 做着规划,当然也有不少朋友执行力和工作效率比较高,直接把 2018 年初制定的计划拷贝一下,就能在 3 秒钟内完成 2019 年计划的制定,在此表示祝贺。2018 年从经济角度讲,对于所有人可能都是比较难过的一年,而对于自然语言处理领域来说,2018 年无疑是个收获颇丰的年头,而诸多技术进展如果只能选择一项来讲的话,那么当之无愧的应该就是 BERT 模型了。

在上一篇介绍 Bert 的文章「从 Word Embedding 到 Bert 模型—自然语言处理中的预训练技术发展史」里,我曾大言不惭地宣称如下两个个人判断:一个是 Bert 这种两阶段的模式(预训练+Finetuning)必将成为 NLP 领域研究和工业应用的流行方法;第二个是从 NLP 领域的特征抽取器角度来说,Transformer 会逐步取代 RNN 成为最主流的的特征抽取器。

关于特征抽取器方面的判断,上面文章限于篇幅,只是给了一个结论,并未给出具备诱惑力的说明,看过我文章的人都知道我不是一个随便下结论的人(那位正在补充下一句:「你随便起来不是……」的同学请住口,请不要泄露国家机密,你可以继续睡觉,吵到其它同学也没有关系,哈哈),但是为什么当时我会下这个结论呢?本文可以看做是上文的一个外传,会给出比较详实的证据来支撑之前给出的结论。

如果对目前 NLP 里的三大特征抽取器的未来走向趋势做个宏观判断的话,我的判断是这样的:RNN 人老珠黄,已经基本完成它的历史使命,将来会逐步退出历史舞台;CNN 如果改造得当,将来还是有希望有自己在 NLP 领域的一席之地,如果改造成功程度超出期望,那么还有一丝可能作为割据一方的军阀,继续生存壮大,当然我认为这个希望不大,可能跟宋小宝打篮球把姚明打哭的概率相当;而新欢 Transformer 明显会很快成为 NLP 里担当大任的最主流的特征抽取器。

至于将来是否会出现新的特征抽取器,一枪将 Tranformer 挑落马下,继而取而代之成为新的特征抽取山大王?这种担忧其实是挺有必要的,毕竟李商隐在一千年前就告诫过我们说:「君恩如水向东流,得宠忧移失宠愁。莫向樽前奏花落,凉风只在殿西头。」当然这首诗看样子目前送给 RNN 是比较贴切的,至于未来 Transformer 是否会失宠?这个问题的答案基本可以是肯定的,无非这个时刻的来临是 3 年之后,还是 1 年之后出现而已。

当然,我希望如果是在读这篇文章的你,或者是我,在未来的某一天,从街头拉来一位长相普通的淑女,送到韩国整容,一不小心偏离流水线整容工业的美女模板,整出一位天香国色的绝色,来把 Transformer 打入冷宫,那是最好不过。但是在目前的状态下,即使是打着望远镜,貌似还没有看到有这种资质的候选人出现在我们的视野之内。

我知道如果是一位严谨的研发人员,不应该在目前局势还没那么明朗的时候做出如上看似有些武断的明确结论,所以这种说法可能会引起争议。但是这确实就是我目前的真实想法,至于根据什么得出的上述判断?这种判断是否有依据?依据是否充分?相信你在看完这篇文章可以有个属于自己的结论。

可能谈到这里,有些平常吃亏吃的少所以喜欢挑刺的同学会质疑说:你凭什么说 NLP 的典型特征抽取器就这三种呢?你置其它知名的特征抽取器比如 Recursive NN 于何地? 嗯,是,很多介绍 NLP 重要进展的文章里甚至把 Recursive NN 当做一项 NLP 里的重大进展,除了它,还有其它的比如 Memory Network 也享受这种部局级尊贵待遇。但是我一直都不太看好这两个技术,而且不看好很多年了,目前情形更坚定了这个看法。而且我免费奉劝你一句,没必要在这两个技术上浪费时间,至于为什么,因为跟本文主题无关,以后有机会再详细说。

上面是结论,下面,我们正式进入举证阶段。

专业用户独享

本文为机器之心深度精选内容,专业认证后即可阅读全文
开启专业认证
入门知乎自然语言处理特征抽取CNNRNNTransformer
14
相关数据
来也机构

「来也」是国内领先的人工智能交互平台,由常春藤盟校(Ivy League)归国博士和MBA团队发起,核心技术涵盖自然语言处理(NLP)、多轮对话控制和个性化推荐系统等。公司已获得数十项专利和国家高新技术企业认证。 来也的愿景是通过AI赋能,让每个人拥有助理。C 端产品小来是智能化的在线助理,通过业内创新的AI+Hi模式,提供日程、打车、咖啡、差旅和个性化查询等三十余项技能(覆盖400w用户和数十万服务者),让用户用自然语言发起需求并得到高效的满足。B端品牌吾来输出知识型的交互机器人和智能客户沟通系统,帮助各领域企业客户打造行业助理。目前已经在母婴,商旅,金融和汽车等行业的标杆企业实现商业化落地。

https://www.laiye.com/
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

基于Transformer 的双向编码器表征技术

BERT是谷歌发布的基于双向 Transformer的大规模预训练语言模型,该预训练模型能高效抽取文本信息并应用于各种NLP任务,并刷新了 11 项 NLP 任务的当前最优性能记录。BERT的全称是基于Transformer的双向编码器表征,其中“双向”表示模型在处理某一个词时,它能同时利用前面的词和后面的词两部分信息。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

时间复杂度技术

在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。例如,如果一个算法对于任何大小为 n (必须比 n0 大)的输入,它至多需要 5n3 + 3n 的时间运行完毕,那么它的渐近时间复杂度是 O(n3)。

文本分类技术

该技术可被用于理解、组织和分类结构化或非结构化文本文档。文本挖掘所使用的模型有词袋(BOW)模型、语言模型(ngram)和主题模型。隐马尔可夫模型通常用于词性标注(POS)。其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

逻辑推理技术

逻辑推理中有三种方式:演绎推理、归纳推理和溯因推理。它包括给定前提、结论和规则

超参数技术

在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。

词性标注技术

词性标注是指为分词结果中的每个单词标注一个正确的词性的程序,也即确定每个词是名词、动词、形容词或其他词性的过程。

机器翻译技术

机器翻译(MT)是利用机器的力量「自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)」。机器翻译方法通常可分成三大类:基于规则的机器翻译(RBMT)、统计机器翻译(SMT)和神经机器翻译(NMT)。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

命名实体识别技术

命名实体识别(NER)是信息提取(Information Extraction)的一个子任务,主要涉及如何从文本中提取命名实体并将其分类至事先划定好的类别,如在招聘信息中提取具体招聘公司、岗位和工作地点的信息,并将其分别归纳至公司、岗位和地点的类别下。命名实体识别往往先将整句拆解为词语并对每个词语进行此行标注,根据习得的规则对词语进行判别。这项任务的关键在于对未知实体的识别。基于此,命名实体识别的主要思想在于根据现有实例的特征总结识别和分类规则。这些方法可以被分为有监督(supervised)、半监督(semi-supervised)和无监督(unsupervised)三类。有监督学习包括隐形马科夫模型(HMM)、决策树、最大熵模型(ME)、支持向量机(SVM)和条件随机场(CRF)。这些方法主要是读取注释语料库,记忆实例并进行学习,根据这些例子的特征生成针对某一种实例的识别规则。

情感计算技术

情感计算(也被称为人工情感智能或情感AI)是基于系统和设备的研究和开发来识别、理解、处理和模拟人的情感。它是一个跨学科领域,涉及计算机科学、心理学和认知科学(cognitive science)。在计算机领域,1995年Rosalind Picard 首次提出affective computing。研究的目的是使得情感能够模拟和计算。这个技术也可以让机器人能够理解人类的情绪状态,并且适应它们的行为,对这些情绪做出适当的反应。这是一个日渐兴起的兴欣领域

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

大数据技术技术

大数据,又称为巨量资料,指的是传统数据处理应用软件不足以处理它们的大或复杂的数据集的术语。

特征抽取技术

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

降维技术

降维算法是将 p+1 个系数的问题简化为 M+1 个系数的问题,其中 M<p。算法执行包括计算变量的 M 个不同线性组合或投射(projection)。然后这 M 个投射作为预测器通过最小二乘法拟合一个线性回归模型。两个主要的方法是主成分回归(principal component regression)和偏最小二乘法(partial least squares)。

图像处理技术

图像处理是指对图像进行分析、加工和处理,使其满足视觉、心理或其他要求的技术。 图像处理是信号处理在图像领域上的一个应用。 目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。

长距离依赖技术

也作“长距离调序”问题,在机器翻译中,比如中英文翻译,其语言结构差异比较大,词语顺序存在全局变化,不容易被捕捉

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

梯度消失问题技术

梯度消失指的是随着网络深度增加,参数的梯度范数指数式减小的现象。梯度很小,意味着参数的变化很缓慢,从而使得学习过程停滞,直到梯度变得足够大,而这通常需要指数量级的时间。这种思想至少可以追溯到 Bengio 等人 1994 年的论文:「Learning long-term dependencies with gradient descent is difficult」,目前似乎仍然是人们对深度神经网络的训练困难的偏好解释。

堆叠技术

堆叠泛化是一种用于最小化一个或多个泛化器的泛化误差率的方法。它通过推导泛化器相对于所提供的学习集的偏差来发挥其作用。这个推导的过程包括:在第二层中将第一层的原始泛化器对部分学习集的猜测进行泛化,以及尝试对学习集的剩余部分进行猜测,并且输出正确的结果。当与多个泛化器一起使用时,堆叠泛化可以被看作是一个交叉验证的复杂版本,利用比交叉验证更为复杂的策略来组合各个泛化器。当与单个泛化器一起使用时,堆叠泛化是一种用于估计(然后纠正)泛化器的错误的方法,该泛化器已经在特定学习集上进行了训练并被询问了特定问题。

语言模型技术

语言模型经常使用在许多自然语言处理方面的应用,如语音识别,机器翻译,词性标注,句法分析和资讯检索。由于字词与句子都是任意组合的长度,因此在训练过的语言模型中会出现未曾出现的字串(资料稀疏的问题),也使得在语料库中估算字串的机率变得很困难,这也是要使用近似的平滑n元语法(N-gram)模型之原因。

阿里巴巴机构

阿里巴巴网络技术有限公司(简称:阿里巴巴集团)是以曾担任英语教师的马云为首的18人于1999年在浙江杭州创立的公司。 阿里巴巴集团经营多项业务,另外也从关联公司的业务和服务中取得经营商业生态系统上的支援。业务和关联公司的业务包括:淘宝网、天猫、聚划算、全球速卖通、阿里巴巴国际交易市场、1688、阿里妈妈、阿里云、蚂蚁金服、菜鸟网络等。 2014年9月19日,阿里巴巴集团在纽约证券交易所正式挂牌上市,股票代码“BABA”,创始人和董事局主席为马云。 2018年7月19日,全球同步《财富》世界500强排行榜发布,阿里巴巴集团排名300位。2018年12月,阿里巴巴入围2018世界品牌500强。

https://www.alibabagroup.com/
百度机构

百度(纳斯达克:BIDU),全球最大的中文搜索引擎、最大的中文网站。1999年底,身在美国硅谷的李彦宏看到了中国互联网及中文搜索引擎服务的巨大发展潜力,抱着技术改变世界的梦想,他毅然辞掉硅谷的高薪工作,携搜索引擎专利技术,于 2000年1月1日在中关村创建了百度公司。 “百度”二字,来自于八百年前南宋词人辛弃疾的一句词:众里寻他千百度。这句话描述了词人对理想的执着追求。 百度拥有数万名研发工程师,这是中国乃至全球最为优秀的技术团队。这支队伍掌握着世界上最为先进的搜索引擎技术,使百度成为中国掌握世界尖端科学核心技术的中国高科技企业,也使中国成为美国、俄罗斯、和韩国之外,全球仅有的4个拥有搜索引擎核心技术的国家之一。

http://home.baidu.com/
暂无评论
暂无评论~