Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

Jason Brownlee作者Geek AI、张倩编译Machine Learning Mastery选自

用Keras中的权值约束缓解过拟合


权值约束为缓解深度学习神经网络模型对训练数据的过拟合、提高模型在新数据上的性能提供了一种方法。目前有多种类型的权值约束方式,比如最大向量范数和单位向量范数,其中有些方法要求用户必须配置参数。在本教程中,作者介绍了向深度学习神经网络模型加入权值约束以缓解过拟合的 Keras API。

本教程将帮你掌握:

  • 如何使用 Keras API 创建向量范数约束。

  • 如何使用 Keras API 向多层感知机(MLP)、卷积神经网络(CNN)以及循环神经网络(RNN)层加入权值约束。

  • 如何通过向一个现有的模型添加权值约束来缓解过拟合

如何使用 Keras 中的权值约束缓解深度神经网络中的过拟合现象(图源:https://www.flickr.com/photos/31246066@N04/5907974408/)

教程大纲

本教程分为三个部分:

1.    Keras 中的权值约束

2.    神经网络层上的权值约束

3.    权值约束的案例分析

Keras 中的权值约束

Keras API 支持权值约束技术。这样的权值约束是逐层指定的,但是需要在层中的每一个节点应用并执行。使用权值约束的方法通常包括在层上为输入权值设置「kernel_constraint」参数,以及为偏置的权值设置「bias_constraint」。一般来说,权值约束不会用于偏置的权重。我们可以使用一组不同的向量范数作为权值约束,Keras 在「keras.constraints module」中给出了这些方法:

  • 最大范数(max_norm),限制权值的大小不超过某个给定的极限。

  • 非负范数(non_neg),限制权值为正。

  • 单位范数(unit_form),限制权值大小为 1.0。

  • 最小最大范数(min_max_norm),限制权值大小在某个范围内。

例如,一个权值约束可以通过下面的方式被引入并实例化

# import norm
from keras.constraints import max_norm
# instantiate norm
norm = max_norm(3.0)
Weight Constraints on Layers

神经网络层上的权值约束

在 Keras 中,多数层都可以使用权值范数。本章将介绍一些常见的示例。

  • 多层感知机的权值约束

下面的例子在一个稠密全连接层中设置了一个最大范数权值约束。

# example of max norm on a dense layer
from keras.layers import Dense
from keras.constraints import max_norm
...
model.add(Dense(32, kernel_constraint=max_norm(3), bias_constraint==max_norm(3)))
...
  • 卷积神经网络的权值约束

下面的例子在一个卷积层中设置了一个最大范数权值约束。

# example of max norm on a cnn layer
from keras.layers import Conv2D
from keras.constraints import max_norm
...
model.add(Conv2D(32, (3,3), kernel_constraint=max_norm(3), bias_constraint==max_norm(3)))
...
  • 循环神经网络的权值约束

与其他的层类型不同,循环神经网络允许你同时针对输入权值、偏置权值以及循环输入权值设置一个权值约束。对循环权值执行的约束是通过设置这一层的「recurrent_constraint」参数实现的。

下面的示例在一个 LSTM 层上设置了一个最大范数权值约束。

# example of max norm on an lstm layer
from keras.layers import LSTM
from keras.constraints import max_norm
...
model.add(LSTM(32, kernel_constraint=max_norm(3), recurrent_constraint=max_norm(3), bias_constraint==max_norm(3)))
...

相信读到这里,读者已经知道如何使用权值约束 API 了。下面将为读者展示一个有效的案例。

权值约束案例分析

在本章中,我们将展示如何在一个简单的二分类问题上使用权值约束缓解一个多层感知机的过拟合现象。

下面的例子给出了一个将权值约束应用到用于分类和回归问题的神经网络的模板。

  • 分类问题

本文使用了一个标准的二分类问题,它定义了两个半圆的观测数据,每一个半圆对应一个类。每个观测数据都有两个相同规模的输入变量和一个 0 或 1 的类输出值。该数据集被称为「月牙形」数据集,因为在绘制图形时,每个类别的观测数据所形成的形状都是如此。我们可以使用「make_moons()」函数为该问题生成观测数据。我们将向数据增加一些噪声,并且为随机数生成器设置了种子,从而使每次代码运行时生成的示例相同。

# generate 2d classification dataset
X, y = make_moons(n_samples=100, noise=0.2, random_state=1)

我们可以在一幅图中将数据集中的两个变量作为 x 和 y 坐标绘制出来,并用观测的颜色表示分类值的大小。

生成数据集及绘图的完整示例如下:

# generate two moons dataset
from sklearn.datasets import make_moons
from matplotlib import pyplot
from pandas import DataFrame
# generate 2d classification dataset
X, y = make_moons(n_samples=100, noise=0.2, random_state=1)
# scatter plot, dots colored by class value
df = DataFrame(dict(x=X[:,0], y=X[:,1], label=y))
colors = {0:'red', 1:'blue'}
fig, ax = pyplot.subplots()
grouped = df.groupby('label')
for key, group in grouped:
 group.plot(ax=ax, kind='scatter', x='x', y='y', label=key, color=colors[key])
pyplot.show()

运行该示例代码将创建一个散点图,该图会显示出每个类的半圆或月牙形的观测数据。我们可以看到这些散开的噪声使得月牙形显得没有那么明显了。

月牙形数据集的散点图,图中不同的颜色表示每个样本的类值

这是一个很好的测试问题,因为这样的类不能通过一条直线来分割,即线性不可分的情况,我们需要通过诸如神经网络这样的非线性方法来解决这个问题。

我们仅仅生成了 100 个样本,这样的样本量对于一个神经网络来说是很小的,但这恰好为在训练数据集上发生过拟合提供了机会,会在测试数据集上出现更高的误差:

这是一个使用正则化技术的绝佳场合。此外,样本中带有噪声,这让该模型有机会学习到它不能够泛化到的样本的一些特征。

  • 过拟合的多层感知机

我们可以开发一个多层感知机模型来解决这个二分类问题。该模型将含有一个隐藏层,其中包含的节点比解决这个问题本身所需的节点要多一些,从而为过拟合提供了机会。我们还将对模型进行较长时间的训练,以确保模型过拟合。在定义模型之前,我们将把数据集分为训练集和测试集,使用 30 个示例训练模型,70 个示例评估拟合模型的性能。

# generate 2d classification dataset
X, y = make_moons(n_samples=100, noise=0.2, random_state=1)
# split into train and test
n_train = 30
trainX, testX = X[:n_train, :], X[n_train:, :]
trainy, testy = y[:n_train], y[n_train:]

接下来,我们可以开始定义模型了。隐藏层使用了 500 个节点,并且使用了线性整流(ReLU)函数。在输出层中使用 sigmoid 激活函数来预测类的值为 0 还是 1。该模型采用二值交叉熵损失函数进行优化,适用于二分类问题和高效的 Adam 版本的梯度下降

# define model
model = Sequential()
model.add(Dense(500, input_dim=2, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

接着,上面定义的模型将在训练数据上进行 4000 个 epoch 的拟合,默认批大小为 32。我们还将使用测试数据集作为验证数据集进行实验。

# fit model
history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)

我们可以评价该模型在测试数据集上的性能,并展示实验结果。

# evaluate the model
_, train_acc = model.evaluate(trainX, trainy, verbose=0)
_, test_acc = model.evaluate(testX, testy, verbose=0)
print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))

最后,我们将绘制模型在每个 epoch 中在训练集和测试集上的性能曲线。如果模型确实过拟合了训练数据集,随着模型在训练数据集中学习到统计噪声,我们希望训练集的准确率直线图会持续递增,而测试集的准确率曲线则会先上升,然后再次下降。

# plot history
pyplot.plot(history.history['acc'], label='train')
pyplot.plot(history.history['val_acc'], label='test')
pyplot.legend()
pyplot.show()

将以上所有部分合并在一起后,我们得到了如下所示的完整示例。

# mlp overfit on the moons dataset
from sklearn.datasets import make_moons
from keras.layers import Dense
from keras.models import Sequential
from matplotlib import pyplot
# generate 2d classification dataset
X, y = make_moons(n_samples=100, noise=0.2, random_state=1)
# split into train and test
n_train = 30
trainX, testX = X[:n_train, :], X[n_train:, :]
trainy, testy = y[:n_train], y[n_train:]
# define model
model = Sequential()
model.add(Dense(500, input_dim=2, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit model
history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)
# evaluate the model
_, train_acc = model.evaluate(trainX, trainy, verbose=0)
_, test_acc = model.evaluate(testX, testy, verbose=0)
print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))
# plot history
pyplot.plot(history.history['acc'], label='train')
pyplot.plot(history.history['val_acc'], label='test')
pyplot.legend()
pyplot.show()

通过运行上面的示例,你将得到模型在训练数据集和测试数据集上的性能。

我们可以看到,该模型在训练数据集上的性能优于在测试数据集上的性能,这可能是发生过拟合的一个迹象。

由于神经网络和训练算法的随机特性,你得到的具体训练结果可能有所不同。由于模型是过拟合的,所以我们通常不会期望模型在相同数据集上重复运行得到的准确率之间有很大差异。

Train: 1.000, Test: 0.914

在训练和测试集上创建的显示模型准确率的折线图。

我们可以看到预期的过拟合模型的形状,它的准确率会增加到一个点,然后又开始下降。

  • 带权值约束的过拟合多层感知机

我们可以进一步更新使用权值约束的示例。有几种不同的权值约束方式可供选择。对于该模型来说,一个很好的简单约束方式就是直接归一化权值,使范数等于 1.0。这个约束的作用是迫使所有传入的权值都很小。我们可以通过使用 Keras 中的「unit_norm」来实现这一点。该约束可以通过下面的方式添加到第一个隐藏层中:

model.add(Dense(500, input_dim=2, activation='relu', kernel_constraint=unit_norm()))

我们还可以通过使用「min_max_norm」并将最小值和最大值都设为 1.0 来得到相同的结果,例如:

model.add(Dense(500, input_dim=2, activation='relu', kernel_constraint=min_max_norm(min_value=1.0, max_value=1.0)))

我们不能使用最大范数约束得到相同的结果,这是因为它允许范数取不大于某个极限的值,例如:

model.add(Dense(500, input_dim=2, activation='relu', kernel_constraint=max_norm(1.0)))

完整的带单位范数约束的新的示例如下:

# mlp overfit on the moons dataset with a unit norm constraint
from sklearn.datasets import make_moons
from keras.layers import Dense
from keras.models import Sequential
from keras.constraints import unit_norm
from matplotlib import pyplot
# generate 2d classification dataset
X, y = make_moons(n_samples=100, noise=0.2, random_state=1)
# split into train and test
n_train = 30
trainX, testX = X[:n_train, :], X[n_train:, :]
trainy, testy = y[:n_train], y[n_train:]
# define model
model = Sequential()
model.add(Dense(500, input_dim=2, activation='relu', kernel_constraint=unit_norm()))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit model
history = model.fit(trainX, trainy, validation_data=(testX, testy), epochs=4000, verbose=0)
# evaluate the model
_, train_acc = model.evaluate(trainX, trainy, verbose=0)
_, test_acc = model.evaluate(testX, testy, verbose=0)
print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))
# plot history
pyplot.plot(history.history['acc'], label='train')
pyplot.plot(history.history['val_acc'], label='test')
pyplot.legend()
pyplot.show()

通过运行上面的示例,你将得到模型在训练数据集和测试数据集上的性能。

我们可以看到,对权值大小的严格约束确实在不影响模型在训练集上的性能的情况下提高了模型在保留(验证)集上的性能。

Train: 1.000, Test: 0.943

仔细观察训练和测试的准确率的折线图,我们可以看到,模型不再出现过拟合训练数据集的情况。

在训练集和测试集上的模型的准确率继续上升到一个稳定的水平。

扩展

本章列举出了一些扩展内容:

  • 显示出权值范数。更新示例以计算所处网络权值的大小,并说明权值约束确实能让权值更小。

  • 约束输出层。更新示例,向模型的输出层添加约束并比较结果。

  • 约束偏置。更新示例,从而向偏差权值添加约束并比较结果。

  • 多次评价。更新示例,从而对模型进行多次拟合和评价,并显示出模型性能的均值和标准差。

API

  • Keras Constraints API:https://keras.io/constraints/

  • Keras constraints.py:https://github.com/keras-team/keras/blob/master/keras/constraints.py

  • Keras Core Layers API:https://keras.io/layers/core/

  • Keras Convolutional Layers API:https://keras.io/layers/convolutional/

  • Keras Recurrent Layers API:https://keras.io/layers/recurrent/

  • sklearn.datasets.make_moons API:http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

原文链接:https://machinelearningmastery.com/how-to-reduce-overfitting-in-deep-neural-networks-with-weight-constraints-in-keras/

入门Keras过拟合
5
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

范数技术

范数(norm),是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,是一个函数,其为向量空间内的所有向量赋予非零的正长度或大小。半范数反而可以为非零的向量赋予零长度。

激活函数技术

在 计算网络中, 一个节点的激活函数定义了该节点在给定的输入或输入的集合下的输出。标准的计算机芯片电路可以看作是根据输入得到"开"(1)或"关"(0)输出的数字网络激活函数。这与神经网络中的线性感知机的行为类似。 一种函数(例如 ReLU 或 S 型函数),用于对上一层的所有输入求加权和,然后生成一个输出值(通常为非线性值),并将其传递给下一层。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

交叉熵技术

交叉熵(Cross Entropy)是Loss函数的一种(也称为损失函数或代价函数),用于描述模型预测值与真实值的差距大小

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

超参数技术

在机器学习中,超参数是在学习过程开始之前设置其值的参数。 相反,其他参数的值是通过训练得出的。 不同的模型训练算法需要不同的超参数,一些简单的算法(如普通最小二乘回归)不需要。 给定这些超参数,训练算法从数据中学习参数。相同种类的机器学习模型可能需要不同的超参数来适应不同的数据模式,并且必须对其进行调整以便模型能够最优地解决机器学习问题。 在实际应用中一般需要对超参数进行优化,以找到一个超参数元组(tuple),由这些超参数元组形成一个最优化模型,该模型可以将在给定的独立数据上预定义的损失函数最小化。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

梯度下降技术

梯度下降是用于查找函数最小值的一阶迭代优化算法。 要使用梯度下降找到函数的局部最小值,可以采用与当前点的函数梯度(或近似梯度)的负值成比例的步骤。 如果采取的步骤与梯度的正值成比例,则接近该函数的局部最大值,被称为梯度上升。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

分类问题技术

分类问题是数据挖掘处理的一个重要组成部分,在机器学习领域,分类问题通常被认为属于监督式学习(supervised learning),也就是说,分类问题的目标是根据已知样本的某些特征,判断一个新的样本属于哪种已知的样本类。根据类别的数量还可以进一步将分类问题划分为二元分类(binary classification)和多元分类(multiclass classification)。

过拟合技术

过拟合是指为了得到一致假设而使假设变得过度严格。避免过拟合是分类器设计中的一个核心任务。通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

正则化技术

当模型的复杂度增大时,训练误差会逐渐减小并趋向于0;而测试误差会先减小,达到最小值后又增大。当选择的模型复杂度过大时,过拟合现象就会发生。这样,在学习时就要防止过拟合。进行最优模型的选择,即选择复杂度适当的模型,以达到使测试误差最小的学习目的。

长短期记忆网络技术

长短期记忆(Long Short-Term Memory) 是具有长期记忆能力的一种时间递归神经网络(Recurrent Neural Network)。 其网络结构含有一个或多个具有可遗忘和记忆功能的单元组成。它在1997年被提出用于解决传统RNN(Recurrent Neural Network) 的随时间反向传播中权重消失的问题(vanishing gradient problem over backpropagation-through-time),重要组成部分包括Forget Gate, Input Gate, 和 Output Gate, 分别负责决定当前输入是否被采纳,是否被长期记忆以及决定在记忆中的输入是否在当前被输出。Gated Recurrent Unit 是 LSTM 众多版本中典型的一个。因为它具有记忆性的功能,LSTM经常被用在具有时间序列特性的数据和场景中。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

推荐文章
暂无评论
暂无评论~