作者Nick Li

中文项目:快速识别验证码,CNN也能为爬虫保驾护航

随着卷积网络的推广,现在有各种各样的快捷应用,例如识别验证码和数学公式等。本文介绍了一个便捷的验证码识别项目,读者可以借助它快速训练模型与识别验证码。

本项目使用卷积神经网络识别字符型图片验证码,其基于 TensorFlow 框架。它封装了非常通用的校验、训练、验证、识别和调用 API,极大地减低了识别字符型验证码花费的时间和精力。

项目地址:https://github.com/nickliqian/cnn_captcha

1 项目介绍

1.1 关于验证码识别

验证码识别大多是爬虫会遇到的问题,也可以作为图像识别的入门案例。这里介绍一下使用传统的图像处理机器学习算法,它们都涉及多种技术:

图像处理

  • 前处理(灰度化、二值化)

  • 图像分割

  • 裁剪(去边框)

  • 图像滤波、降噪

  • 去背景

  • 颜色分离

  • 旋转

机器学习

  • KNN

  • SVM

使用这类方法对使用者的要求较高,且由于图片的变化类型较多,处理的方法不够通用,经常花费很多时间去调整处理步骤和相关算法。

而使用卷积神经网络,只需要通过简单的前处理,就可以实现大部分静态字符型验证码的端到端识别,效果很好、通用性很高。

这里列出目前常用的验证码生成库:

1.2 目录结构

1.3 依赖项

  • tensorflow

  • flask

  • requests

  • PIL

  • matplotlib

pip3 install tensorflow flask requests PIL matplotlib

1.4 模型结构

2 如何使用

2.1 数据集

原始数据集可以存放在./sample/origin 目录中,为了便于处理,图片最好以 2e8j_17322d3d4226f0b5c5a71d797d2ba7f7.jpg 格式命名(标签_序列号. 后缀)。

2.2 配置文件

创建一个新项目前,需要自行修改相关配置文件:

图片文件夹
sample_conf.origin_image_dir = "./sample/origin/"  # 原始文件
sample_conf.train_image_dir = "./sample/train/"   # 训练集
sample_conf.test_image_dir = "./sample/test/"   # 测试集
sample_conf.api_image_dir = "./sample/api/"   # api接收的图片储存路径
sample_conf.online_image_dir = "./sample/online/"  # 从验证码url获取的图片的储存路径

# 模型文件夹
sample_conf.model_save_dir = "./model/"  # 训练好的模型储存路径

# 图片相关参数
sample_conf.image_width = 80  # 图片宽度
sample_conf.image_height = 40  # 图片高度
sample_conf.max_captcha = 4  # 验证码字符个数
sample_conf.image_suffix = "jpg"  # 图片文件后缀

# 验证码字符相关参数
# 验证码识别结果类别
sample_conf.char_set = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',
                        'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']

# 验证码远程链接
sample_conf.remote_url = "https://www.xxxxx.com/getImg"

具体配置的作用会在使用相关脚本的过程中提到。

2.3 验证和拆分数据集

执行下面的文件会校验原始图片集的尺寸和测试图片是否能打开,并按照 19:1 的比例拆分出训练集和测试集。所以需要分别创建和指定三个文件夹:origin,train,test 用于存放相关文件。

也可以修改为不同的目录,但是最好修改为绝对路径。文件夹创建好之后,执行以下命令即可:

python3 verify_and_split_data.py

2.4 训练模型

创建好训练集和测试集之后,就可以开始训练模型了,这里不具体介绍 tensorflow 安装相关问题,读者可查看官网。确保图片相关参数和目录设置正确后,执行以下命令开始训练:

python3 train_model.py

也可以调用类开始训练或执行一次简单的识别演示:

from train_model import TrainModel
from sample import sample_conf

# 导入配置
train_image_dir = sample_conf["train_image_dir"]
char_set = sample_conf["char_set"]
model_save_dir = sample_conf["model_save_dir"]

tm = TrainModel(train_image_dir, char_set, model_save_dir)

tm.train_cnn()  # 执行训练

tm.recognize_captcha()  # 识别演示

2.5 批量验证

使用测试集的图片进行验证,输出准确率

python3 test_batch.py

也可以调用类进行验证:

from test_batch import TestBatch
from sample import sample_conf

# 导入配置
test_image_dir = sample_conf["test_image_dir"]
model_save_dir = sample_conf["model_save_dir"]
char_set = sample_conf["char_set"]
total = 100  # 验证的图片总量

tb = TestBatch(test_image_dir, char_set, model_save_dir, total)
tb.test_batch()  # 开始验证

2.6 启动 WebServer

项目已经封装好加载模型和识别图片的类,启动 web server 后调用接口就可以使用识别服务。启动 web server:

python3 recognize_api.py

接口 url 为 http://127.0.0.1:6000/b

2.7 调用接口

使用 requests 调用接口:

url = "http://127.0.0.1:6000/b"
files = {'image_file': (image_file_name, open('captcha.jpg', 'rb'), 'application')}
r = requests.post(url=url, files=files)

返回的结果是一个 json:

{
    'time': '1542017705.9152594',
    'value': 'jsp1',
}

文件 recognize_online.py 是使用接口在线识别的例子。

工程卷积神经网络
3
相关数据
图像分割技术

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程。图像分割的过程也是一个标记过程,即把属于同一区域的像索赋予相同的编号。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

图像处理技术

图像处理是指对图像进行分析、加工和处理,使其满足视觉、心理或其他要求的技术。 图像处理是信号处理在图像领域上的一个应用。 目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。

批次技术

模型训练的一次迭代(即一次梯度更新)中使用的样本集。

推荐文章
暂无评论
暂无评论~