习近平在中共中央政治局第九次集体学习时强调:加强领导做好规划明确任务夯实基础,推动我国新一代人工智能健康发展

央视网消息(新闻联播):中共中央政治局10月31日下午就人工智能发展现状和趋势举行第九次集体学习。中共中央总书记习近平在主持学习时强调,人工智能是新一轮科技革命和产业变革的重要驱动力量,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。要深刻认识加快发展新一代人工智能的重大意义,加强领导,做好规划,明确任务,夯实基础,促进其同经济社会发展深度融合,推动我国新一代人工智能健康发展。

北京大学教授、中国工程院院士高文就这个问题作了讲解,并谈了意见和建议。

中共中央政治局各位同志认真听取了讲解,并就有关问题进行了讨论。

习近平在主持学习时发表了讲话。他强调,人工智能是引领这一轮科技革命和产业变革的战略性技术,具有溢出带动性很强的“头雁”效应。在移动互联网、大数据、超级计算、传感网、脑科学等新理论新技术的驱动下,人工智能加速发展,呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征,正在对经济发展、社会进步、国际政治经济格局等方面产生重大而深远的影响。加快发展新一代人工智能是我们赢得全球科技竞争主动权的重要战略抓手,是推动我国科技跨越发展、产业优化升级、生产力整体跃升的重要战略资源。

习近平指出,人工智能具有多学科综合、高度复杂的特征。我们必须加强研判,统筹谋划,协同创新,稳步推进,把增强原创能力作为重点,以关键核心技术为主攻方向,夯实新一代人工智能发展的基础。要加强基础理论研究,支持科学家勇闯人工智能科技前沿的“无人区”,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,确保我国在人工智能这个重要领域的理论研究走在前面、关键核心技术占领制高点。要主攻关键核心技术,以问题为导向,全面增强人工智能科技创新能力,加快建立新一代人工智能关键共性技术体系,在短板上抓紧布局,确保人工智能关键核心技术牢牢掌握在自己手里。要强化科技应用开发,紧紧围绕经济社会发展需求,充分发挥我国海量数据和巨大市场应用规模优势,坚持需求导向、市场倒逼的科技发展路径,积极培育人工智能创新产品和服务,推进人工智能技术产业化,形成科技创新和产业应用互相促进的良好发展局面。要加强人才队伍建设,以更大的决心、更有力的措施,打造多种形式的高层次人才培养平台,加强后备人才培养力度,为科技和产业发展提供更加充分的人才支撑。

习近平强调,我国经济已由高速增长阶段转向高质量发展阶段,正处在转变发展方式、优化经济结构、转换增长动力的攻关期,迫切需要新一代人工智能等重大创新添薪续力。我们要深入把握新一代人工智能发展的特点,加强人工智能和产业发展融合,为高质量发展提供新动能。要围绕建设现代化经济体系,以供给侧结构性改革为主线,把握数字化、网络化、智能化融合发展契机,在质量变革、效率变革、动力变革中发挥人工智能作用,提高全要素生产率。要培育具有重大引领带动作用的人工智能企业和产业,构建数据驱动、人机协同、跨界融合、共创分享的智能经济形态。要发挥人工智能在产业升级、产品开发、服务创新等方面的技术优势,促进人工智能同一、二、三产业深度融合,以人工智能技术推动各产业变革,在中高端消费、创新引领、绿色低碳、共享经济、现代供应链、人力资本服务等领域培育新增长点、形成新动能。要推动智能化信息基础设施建设,提升传统基础设施智能化水平,形成适应智能经济、智能社会需要的基础设施体系。

习近平指出,要加强人工智能同保障和改善民生的结合,从保障和改善民生、为人民创造美好生活的需要出发,推动人工智能在人们日常工作、学习、生活中的深度运用,创造更加智能的工作方式和生活方式。要抓住民生领域的突出矛盾和难点,加强人工智能在教育、医疗卫生、体育、住房、交通、助残养老、家政服务等领域的深度应用,创新智能服务体系。要加强人工智能同社会治理的结合,开发适用于政府服务和决策的人工智能系统,加强政务信息资源整合和公共需求精准预测,推进智慧城市建设,促进人工智能在公共安全领域的深度应用,加强生态领域人工智能运用,运用人工智能提高公共服务和社会治理水平。要加强人工智能发展的潜在风险研判和防范,维护人民利益和国家安全,确保人工智能安全、可靠、可控。要整合多学科力量,加强人工智能相关法律、伦理、社会问题研究,建立健全保障人工智能健康发展的法律法规、制度体系、伦理道德。各级领导干部要努力学习科技前沿知识,把握人工智能发展规律和特点,加强统筹协调,加大政策支持,形成工作合力。

产业人工智能政策
1
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

大数据技术技术

大数据,又称为巨量资料,指的是传统数据处理应用软件不足以处理它们的大或复杂的数据集的术语。

强人工智能技术

强人工智能或通用人工智能(Strong AI或者 Artificial General Intelligence)是具备与人类同等智慧、或超越人类的人工智能,能表现正常人类所具有的所有智能行为。强人工智能是人工智能研究的主要目标之一,同时也是科幻小说和未来学家所讨论的主要议题。相对的,弱人工智能(applied AI,narrow AI,weak AI)只处理特定的问题。弱人工智能不需要具有人类完整的认知能力,甚至是完全不具有人类所拥有的感官认知能力,只要设计得看起来像有智慧就可以了。由于过去的智能程式多是弱人工智能,发现这个具有领域的局限性,人们一度觉得强人工智能是不可能的。而强人工智能也指通用人工智能(artificial general intelligence,AGI),或具备执行一般智慧行为的能力。强人工智能通常把人工智能和意识、感性、知识和自觉等人类的特征互相连结。

推荐文章
暂无评论
暂无评论~