如何构建与真实场景紧密相连的、面向不同产品形态、设备级别的 AI 加速器测试评估方案?2018 AIIA 人工智能开发者大会揭晓了答案。会上,《AIIA DNN benchmark——人工智能端侧芯片基准测试评估方案 V0.5 版本》由中国信息通信研究院云大所人工智能部副主任、中国人工智能产业发展联盟(AIIA)总体组组长孙明俊代表中国人工智能产业发展联盟发布。
中国信息通信研究院云大所人工智能部副主任、中国人工智能产业发展联盟总体组组长 孙明俊
AIIA DNN benchmark 的工作目标为客观反映当前以提升深度学习处理能力的 AI 加速器现状,所有指标均旨在提供客观比对维度。AIIA 希望,该方案能够为芯片企业提供第三方评测结果,帮助产品市场宣传;同时为应用企业提供选型参考,帮助产品找到合适其应用场景的芯片。V0.5 版本首先给出了端侧评估方案。
根据孙明俊介绍,AI 基准测试方案的制定面临诸多挑战。即便抛开优化程度、硬件架构等若干问题不谈,延迟、带宽、能耗都要纳入考虑范围。同时,各种神经网络模型都有不同参数,不同设备在不同参数下有不同的输出曲线。如何让指标在不同级别的设备中横向可比?而云端和终端的应用是否需要不同的基准测试?如何为不同测试项目分配权重,以获得一个相对公正客观、有代表性的评分?这些都是应用领域的差异性和实现选择的多样性导致的测评难题。
针对以上特点,AIIA 联合 Arm 中国、阿里巴巴集团、百度、寒武纪科技、ChipIntelli、地平线、华为、华大半导体、Imagination、Synopsys,腾讯、云之声等 12 家企业,推出了 AIIA DNN benchmark——人工智能端侧芯片基准测试评估方案。
AIIA DNN benchmark 将以「版本迭代、不断丰富、不断完善」的工作方式,为更多评测应用场景、评测指标等提供评估方案,最新公布的 v0.5 版本提供了「通用芯片 AI 能力评估」和「定制化芯片的 AI 能力评估」2 种方案评测方案。方案覆盖了时间、性能评价指标以及功耗 3 类测评指标和图片分类、目标检测、语音识别、超分辨率 4 大应用场景。其中通用芯片的 AI 能力评估限定在指定场景、数据集、网络模型、框架下,而定制化芯片的 AI 能力评估将更加关注 AI 芯片对于特殊场景的优化能力,如安防、自动驾驶、智能音箱等。针对每一个具体变量,方案都提供了 check list 选项,供被测方选择。
目前 AIIA DNN benchmark 芯片基准测试评估方案是初级版本,预计会在 10 月底到 11 月初面向企业征集首轮评估对象及方案,首轮测试对象主要为端侧设备。AIIA DNN benchmark 将会从场景、指标、部署位置等角度不断做版本更新,诚邀企业参与。
可以预见,AIIA DNN benchmark 的发布,能够促进芯片供给侧与需求侧的交流,让需求方的意见能够更快传达到芯片企业,让企业进行有针对性的改良,加快行业迭代速度,推动 AI 产业的快速进步。