Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

机器学习实践的10个小秘诀

对于开发人员而言,基于云的机器学习工具带来了使用机器学习创造和提供新的功能的可能性。然而,开发者想要在它们的应用程序中融入机器学习,通常会犯一些错误,本文列了十条注意点以飨读者。

在提供发现埋藏数据深层的模式的能力上,机器学习有着潜在的能力使得应用程序更加的强大并且更能响应用户的需求。精心调校好的算法能够从巨大的并且互不相同的数据源中提取价值,同时没有人类思考和分析的限制。对于开发者而言,机器学习为应用业务的关键分析提供了希望,从而实现从改善客户体验到提供产品推荐上升至超个性化内容服务的任何应用程序。

像Amazon和Micorosoft这样的云供应商提供云功能的机器学习解决方案,承诺为开发者提供一个简单的方法,使得机器学习的能力能够融入到他们的应用程序当中,这也算是最近的头条新闻了。承诺似乎很好,但开发者还需谨慎。

对于开发人员而言,基于云的机器学习工具带来了使用机器学习创造和提供新的功能的可能性。然而,当我们使用不当时,这些工具会输出不好的结果,用户可能会因此而感到不安。测试过微软年龄检测机器学习工具( http://how-old.net/ )的人都会发现,伴随即插即用的易用性而来的是主要的精度问题——对于关键应用程序或者是重大决策,它应该不值得信赖。

想要在应用程序中成功地融入机器学习的开发者,需要注意以下的一些关键要点:

1. 算法使用的数据越多,它的精度会更加准确,所以如果可能要尽量避免抽样

机器学习理论在预测误差上有着非常直观的描述。简而言之,在机器学习模型和最优预测(在理论上达到最佳可能的误差)之间的预测误差的差距可以被分解为三个部分:

  • 由于没有找到正确函数形式的模型的误差
  • 由于没有找到最佳参数的模型的误差
  • 由于没用使用足够数据的模型的误差

如果训练集有限,它可能无法支撑解决这个问题所需的模型复杂性。统计学的基本规律告诉我们,如果我们可以的话,应该利用所有的数据而不是抽样。

2. 对给定的问题选择效果最好的机器学习算法是决定成败的关键

例如,梯度提升树(GBT)是一个非常受欢迎的监督学习算法,由于其精度而被业内开发人员广泛使用。然而,尽管其高度受欢迎,我们也不能盲目的把这种算法应用于任何问题上。相反,我们使用的算法应该是能够最佳地拟合数据特征同时能够保证精度的算法。

为了证明这个观点,尝试做这样一个实验,在数据集 the popular text categorization dataset rcv1上测试GBT算法和线性支持向量机(SVM)算法,并比较两者的精度。我们观察到在这个问题上,就错误率而言,线性SVM要优于GBT算法。这是因为在文本领域当中,数据通常是高维的。一个线性分类器能够在N-1维当中完美的分离出N个样本,所以,一个样本模型在这种数据上通常表现的更好。此外,模型越简单,通过利用有限的训练样本来避免过拟合的方式学习参数,并且提供一个精确的模型,产生的问题也会随之越少。

另一方面,GBT是高度非线性的并且更加强大,但是在这种环境中却更难学习并且更容易发生过拟合,往往结果精度也较低。

3. 为了得到一个更好的模型,必须选择最佳的的算法和相关的参数

这对于非数据科学家而言可能不容易。现代的机器学习算法有许多的参数可以调整。例如,对于流行的GBT算法单独的就有十二个参数可以设置,其中包括如何控制树的大小,学习率,行或列的采样方法,损失函数正则化选项等等。一个特有的项目需要在给定的数据集上为每一个参数找到其最优值并且达到最精准的精度,这确实不是一件容易的事。但是为了得到最佳的结果,数据科学家需要训练大量的模型,而直觉和经验会帮助他们根据交叉验证的得分,然后决定使用什么参数再次尝试。

4. 机器学习模型会随着好的数据而变得更好,错误的数据收集和数据处理会降低你建立预测和归纳的机器学习模型的能力

根据经验,建议仔细审查与主题相关的数据,从而深入了解数据和幕后数据的生成过程。通常这个过程可以识别与记录、特征、值或采样相关的数据质量问题。

5. 理解数据特征并改进它们(通过创造新的特征或者去掉某个特征)对预测能力有着高度的影响

机器学习的一个基本任务就是找到能够被机器学习算法充分利用的丰富特征空间来替代原始数据。例如,特征转换是一种流行的方法,可以通过在原始数据的基础上使用数学上的转换提取新的特征来实现。最后的特征空间(也就是最后用来描述数据的特征)要能更好的捕获数据的多复杂性(如非线性和多种特征之间的相互作用),这对于成功的学习过程至关重要。

6. 在应用中,选择合适的灵感来自商业价值的目标函数/损失函数对于最后的成功至关重要

几乎所有的机器学习算法最后都被当成是一种优化问题。根据业务的性质,合理设置或调整优化的目标函数,是机器学习成功的关键。

支持向量机为例,通过假设所有错误类型的权重相等,对一个二分类问题的泛化误差进行了优化。这对损失敏感的问题并不合适,如故障检测,其中某些类型的错误比重可能比其它类型的要高。在这种情况下,建议通过在特定的错误类型上,增加更多的惩罚来解释它们的权重,从而调整SVM的损失函数

7. 确保正确地处理训练数据和测试数据

如此当在生产中部署该模型时,测试数据能够模拟输入数据。例如,我们可以看到,这对于时间依赖性数据是多么的重要。在这种情况下,使用标准的交叉验证方法进行训练,调整,那么测试模型的结果可能会有偏差,甚至会不准确。这是因为在实施平台上它不能准确的模拟输入数据的性质。为了纠正这一点,在部署时我们必须仿照模型来部署使用。我们应该使用一个基于时间的交叉验证,用时间较新的数据来验证训练模型。

8. 部署前理解模型的泛化误差

泛化误差衡量模型在未知数据上的性能好坏。因为一个模型在训练数据上的性能好并不意味着它在未知的数据上的表现也好。一个精心设计的模拟实际部署使用的模型评估过程,是估计模型泛化误差所需要的。

一不留心就很容易违反交叉验证的规则,并且也没有一种显而易见的方法来表现交叉验证的非正确性,通常在你试图寻找快捷方式计算时发生。在任何模型部署之前,有必要仔细注意交叉验证的正确性,以获得部署性能的科学评估。

9. 知道如何处理非结构化和半结构化数据

如文本、时间序列、空间、图形或者图像数据。大多数机器学习算法在处理特征空间中的数据时,一个特征集代表一个对象,特征集的每一个元素都描述对象的一个特点。在实际当中,数据引进时并不是这种格式化的形式,往往来自于最原始的格式,并且最后都必须被改造成机器学习算法能够识别的理想格式。比如,我们必须知道如何使用各种计算机视觉技术从图像中提取特征或者如何将自然语言处理技术应用于影片文本。

10. 学会将商业问题转换成机器学习算法

一些重要的商业问题,比如欺诈检测、产品推荐、广告精准投放,都有“标准”的机器学习表达形式并且在实践当中取得了合理的成就。即使对于这些众所周知的问题,也还有鲜为人知但功能更强大的表达形式,从而带来更高的预测精度。对于一般在博客和论坛中讨论的小实例的商业问题,适当的机器学习方法则不太明显。

如果你是一个开发者,学习这十个通往成功的诀窍可能似乎是一个艰难的任务,但是不要气馁。事实上,开发者不是数据科学家。认为开发人员可以充分利用所有的机学习工具是不公平的。但是这并不意味着开发人员没有机会去学习一些有水准的数据科学从而改进他们的应用。随着适当的企业解决方案和自动化程度的提高,开发人员可以做模型构建到实施部署的一切事情,使用机器学习最佳实践来保持高精度。

自动化是在应用程序中扩展机器学习的关键。即使你能够供得起一批小的数据科学家团队和开发者携手合作,也没有足够的人才。像Skytree的AutoModel(自动化模型)能够帮助开发者自动地确定最佳的参数并且使得算法得到最大的模型精度。一个易于使用的接口可以引导开发人员通过训练加工,调整并且测试模型来防止统计上的错误。

THU数据派
THU数据派

THU数据派"基于清华,放眼世界",以扎实的理工功底闯荡“数据江湖”。发布全球大数据资讯,定期组织线下活动,分享前沿产业动态。了解清华大数据,敬请关注姐妹号“数据派THU”。

理论机器学习
4
相关数据
权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

学习率技术

在使用不同优化器(例如随机梯度下降,Adam)神经网络相关训练中,学习速率作为一个超参数控制了权重更新的幅度,以及训练的速度和精度。学习速率太大容易导致目标(代价)函数波动较大从而难以找到最优,而弱学习速率设置太小,则会导致收敛过慢耗时太长

梯度提升技术

梯度提升是用于回归和分类问题的机器学习技术,其以弱预测模型(通常为决策树)的集合的形式产生预测模型。 它像其他增强方法一样以阶段式方式构建模型,并且通过允许优化任意可微损失函数来推广它们。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

监督学习技术

监督式学习(Supervised learning),是机器学习中的一个方法,可以由标记好的训练集中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例。训练集是由一系列的训练范例组成,每个训练范例则由输入对象(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

支持向量机技术

在机器学习中,支持向量机是在分类与回归分析中分析数据的监督式学习模型与相关的学习算法。给定一组训练实例,每个训练实例被标记为属于两个类别中的一个或另一个,SVM训练算法创建一个将新的实例分配给两个类别之一的模型,使其成为非概率二元线性分类器。SVM模型是将实例表示为空间中的点,这样映射就使得单独类别的实例被尽可能宽的明显的间隔分开。然后,将新的实例映射到同一空间,并基于它们落在间隔的哪一侧来预测所属类别。

目标函数技术

目标函数f(x)就是用设计变量来表示的所追求的目标形式,所以目标函数就是设计变量的函数,是一个标量。从工程意义讲,目标函数是系统的性能标准,比如,一个结构的最轻重量、最低造价、最合理形式;一件产品的最短生产时间、最小能量消耗;一个实验的最佳配方等等,建立目标函数的过程就是寻找设计变量与目标的关系的过程,目标函数和设计变量的关系可用曲线、曲面或超曲面表示。

分类问题技术

分类问题是数据挖掘处理的一个重要组成部分,在机器学习领域,分类问题通常被认为属于监督式学习(supervised learning),也就是说,分类问题的目标是根据已知样本的某些特征,判断一个新的样本属于哪种已知的样本类。根据类别的数量还可以进一步将分类问题划分为二元分类(binary classification)和多元分类(multiclass classification)。

过拟合技术

过拟合是指为了得到一致假设而使假设变得过度严格。避免过拟合是分类器设计中的一个核心任务。通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

正则化技术

当模型的复杂度增大时,训练误差会逐渐减小并趋向于0;而测试误差会先减小,达到最小值后又增大。当选择的模型复杂度过大时,过拟合现象就会发生。这样,在学习时就要防止过拟合。进行最优模型的选择,即选择复杂度适当的模型,以达到使测试误差最小的学习目的。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

交叉验证技术

交叉验证,有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法。于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证。 一开始的子集被称为训练集。而其它的子集则被称为验证集或测试集。交叉验证的目标是定义一个数据集到“测试”的模型在训练阶段,以便减少像过拟合的问题,得到该模型将如何衍生到一个独立的数据集的提示。

推荐文章
暂无评论
暂无评论~