Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

本周有哪些值得读的论文?15篇良心推荐了解一下

Learning Sentiment Memories for Sentiment Modification without Parallel Data

@tobiaslee 推荐

#Sentiment Modification

本文是北京大学发表于 EMNLP 2018 的工作,论文解决了一个非常有趣的问题——Sentiment Modification,将某种情感极性的文本转化成另外一种极性,比如将“这家店的服务很不错”(正向)变为“这家店的服务很差”(负向)。

通过使用 attention weight 作为指示来去除情感词得到 neutralized context,随后根据情感词构建 sentiment memory,并通过该 memory 对 Seq2Seq 中 decoder 的 initial state 进行初始化,帮助其生成另外一种极性的文本。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2263

源码链接

https://github.com/lancopku/SMAE

Learning to Ask Questions in Open-domain Conversational Systems with Typed Decoders

@filterc 推荐

#Question Generation

本文是清华大学黄民烈老师团队发表于 ACL 2018 的工作。深度学习对话模型存在的问题:语义理解问题、上下文理解问题、个性身份一致性问题。通过向用户提问,可以更好将对话进行下去,而提出一个好问题,也体现机器对人语言的理解。一个好的问题包括:interrogative(询问词),topic word(主题词)和 ordinary word(普通词)。 

本文基于 encoder-decoder 的框架,提出两种 decoders(STD 和 HTD),来估计生成出的句子中每个位置上的词是以上三种类型的分布。作者爬取微博 900w 对话数据,做了两个处理共得到 49w 对。用 20 个人工模板筛选了提问式的回复,过滤了通用的回复如“是吗”、“真的吗”。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2221

源码链接

https://github.com/victorywys/Learning2Ask_TypedDecoder

Learning Context-Sensitive Convolutional Filters for Text Processing

@vertigo 推荐

#Sentence Matching

本文是杜克大学发表于 EMNLP 2018 的工作。基于 hypernetworks 的思想,作者提出了用 Meta Network 来生成 CNN 模型的参数,并通过这种方式将 context 的信息引入到模型当中(Meta Network 的输入可以是句子本身或者另外的文本)。作者将这个 context-sensitive 的框架运用到文档分类和句子匹配等多种问题上,获得了明显的提升。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2260


Toward Convolutional Blind Denoising of Real Photographs

@paperweekly 推荐

#Image Denoising

本文来自哈工大和香港理工大学,主要研究卷积网络在真实图像上的去噪效果。论文提出了一个更加真实的噪声模型,充分考虑了信号依赖噪声和 ISP 流程对噪声的影响,证明了图像噪声模型在真实噪声图像中起着关键作用。其次,论文提出了可实现图像盲去噪的 CBDNet 模型,该模型包含一个噪声估计子网络和一个非盲去噪子网络。

此外,作者还提出了非对称学习(asymmetric learning)的损失函数,允许用户交互式调整去噪结果以增强去噪结果的鲁棒性。作者将合成噪声图像与真实噪声图像一起用于网络的训练,提升网络的去噪效果和泛化能力。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2294

源码链接

https://github.com/GuoShi28/CBDNet

Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images

@paperweekly 推荐

#3D Reconstruction

本文是复旦大学、普林斯顿大学、Intel Labs 和腾讯 AI Lab 合作发表于 ECCV 2018 的工作。文章提出了一种端到端的深度学习框架,可从单张彩色图片直接生成三维网格(3D Mesh)。与现有方法不同,本文使用图卷积神经网络表示 3D mesh,利用从输入图像中提取的特征逐步对椭球进行变形从而产生正确的几何形状。本文使用由粗到精的模式进行生成,使得整个变形过程更加稳定。

论文详细解读:ECCV 2018 | Pixel2Mesh:从单帧RGB图像生成三维网格模型

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2283

源码链接

https://github.com/nywang16/Pixel2Mesh

A review on deep learning for recommender systems: challenges and remedies

@somtian 推荐

#Recommender Systems

本文是最新发表的一篇利用深度学习推荐系统的综述,不仅从深度学习模型方面对文献进行了分类,而且从推荐系统研究的问题方面对文献做了分类。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2271

Multi-Source Domain Adaptation with Mixture of Experts

@zhangjun 推荐

#Domain Adaptation

本文是麻省理工发表于 EMNLP 2018 的工作,论文提出了一种多源迁移学习的无监督训练方法,通过将所有 source 分为 meta-source 和 meta-target 自动构建训练数据集,显式地学习每个 source set 和 target example 之间的匹配度,不同的匹配度将决定 source 对 target 的重要程度。本文方法可以很好地避免 negative transfer,文中实验成功地将 twitter source 匹配度降到最低。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2284

Graph Edit Distance Computation via Graph Neural Networks

@xuehansheng 推荐

#Network Embedding

本文针对现有的网络图相似度计算方法 GED/MCS 的时间复杂度较高的缺陷,提出了一种基于神经网络的全新的网络图相似度计算方法,在保证准确率的同时提高计算效率。本文的主要贡献在于首次将神经网络引用到图计算中,为图相似度计算提供了一个全新的研究方向。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2257

SGM: Sequence Generation Model for Multi-label Classification

@lxylxyoo 推荐

#Text Classification

本文是北京大学发表于 COLING 2018 的工作,论文用序列生成的方式进行多标签分类,引入了标签之间的相关性。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2270

源码链接

https://github.com/lancopku/SGM

Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences

@guohao916 推荐

#Machine Reading Comprehension

本文发布了一个基于多语句的机器阅读理解数据集,与以往常见的机器阅读理解数据集不同,该数据集具有以下特点: 

1. 数据集中答案以多选的形式出现,一个问题对应多个答案,不局限于一个答案;

2. 对于问题的解释来自于篇章中的多条语句,而不是仅局限于一条语句;

3. 数据集来源于 7 个不同的领域(话题),从而增强了篇章内容话题的多样性。 

针对该问题和数据集,作者设计了一系列基于多个基准算法的实验。基准算法包括:Random, IR, SurfaceIR, SemanticILP, BiDAF。文章定义了问题被回答的准确率,召回率和 F1 并设定为度量指标。实验结果表明不论是在验证集还是在测试集上,表现最好的基准算法 SurfaceIR 得到的 F1 指标,相比较于人工判断得到的结果相差接近 20 个百分点。因此模型上还存在着很大的改进和提升空间。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2256

源码链接

https://github.com/CogComp/multirc

Video Re-localization

@paperweekly 推荐

#Video Re-localization

本文是腾讯 AI Lab 和美国罗切斯特大学合作发表于 ECCV 2018 的工作,研究目的是在给定一个欲搜索的视频后,在某个备选视频中快速找到与搜索视频语义相关的片段,这在视频处理研究领域仍属空白。因此本文定义了一个新任务——视频再定位(Video Re-localization),重组 ActivityNet 数据集视频,生成了一个符合研究需求的新数据集,并提出一种交叉过滤的双线性匹配模型,实验已证明了其有效性。

论文详细解读:ECCV 2018 | 腾讯AI Lab提出视频再定位任务,准确定位相关视频内容

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2272

源码链接

https://github.com/fengyang0317/video_reloc

Dual Attention Network for Scene Segmentation

@paperweekly 推荐

#Scene Segmentation

本文来自中科院自动化所。场景分割是语义分割领域中重要且具有挑战的方向,为了有效完成场景分割任务,需要区分一些容易混淆的类别,并考虑不同外观的物体。本文提出了一个新的自然场景图像分割框架,称为双重注意力网络(DANet),引入了一种自注意力机制来分别捕捉空间维度和通道维度上的视觉特征关联。

在处理复杂多样的场景时,本文提出的方法比以往的方法更为灵活、有效,在三个具有挑战性的场景分割数据集(Cityscapes、PASCAL Context 和 COCO Stuff)上取得了当前最佳分割性能。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2295

源码链接

https://github.com/junfu1115/DANet

Real-time Personalization using Embeddings for Search Ranking at Airbnb

@Minusone 推荐

#Recommender System

本文是 Airbnb 团队发表于 KDD 18 的工作,摘得 Applied Data Science Track Best Paper 奖项。论文介绍了 Airbnb 利用 word embedding 的思路训练 Listing(也就是待选择的民宿房间)和用户的 embedding 向量,并在此基础上实现相似房源推荐和实时个性化搜索。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2264
Searching Toward Pareto-Optimal Device-Aware Neural Architectures

@zhangjun 推荐

#Neural Architecture Search


本文来自 Google Research 和国立清华大学。大多数 NAS 的工作都针对优化结果在 test dataset 上的准确性,而忽略了在一些硬件设备(比如:手机)上的模型还应考虑延迟和功耗,由此可将单目标优化问题转换成一个多目标优化问题。本文深入分析了两种常见的多目标 NAS 模型 MONAS 和 DPP-Net,并在一些设备上进行了实验对比。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2259

Explainable Recommendation: A Survey and New Perspectives

@Molly 推荐

#Recommender System

本文是对“可解释性推荐系统”相关以及最新研究的调研总结,内容包括问题定义、问题历史、解决方案、相关应用和未来方向。论文内容较为全面,对于刚接触这一方向或者已经从事搭配领域的业者学者有很好的借鉴意义,文章最后对于一些可以发展的方向的论述也很有启发意义。

 论文模型:点击查看大图

论文链接

https://www.paperweekly.site/papers/2276


PaperWeekly
PaperWeekly

推荐、解读、讨论和报道人工智能前沿论文成果的学术平台。

理论论文AI
6
相关数据
英特尔机构

英特尔(NASDAQ: INTC)是全球半导体行业的引领者,以计算和通信技术奠定全球创新基石,塑造以数据为中心的未来。我们通过精尖制造的专长,帮助保护、驱动和连接数十亿设备以及智能互联世界的基础设施 —— 从云、网络到边缘设备以及它们之间的一切,并帮助解决世界上最艰巨的问题和挑战。

http://www.intel.cn/
相关技术
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

基准技术

一种简单的模型或启发法,用作比较模型效果时的参考点。基准有助于模型开发者针对特定问题量化最低预期效果。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

时间复杂度技术

在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。例如,如果一个算法对于任何大小为 n (必须比 n0 大)的输入,它至多需要 5n3 + 3n 的时间运行完毕,那么它的渐近时间复杂度是 O(n3)。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

验证集技术

验证数据集是用于调整分类器超参数(即模型结构)的一组数据集,它有时也被称为开发集(dev set)。

推荐系统技术

推荐系统(RS)主要是指应用协同智能(collaborative intelligence)做推荐的技术。推荐系统的两大主流类型是基于内容的推荐系统和协同过滤(Collaborative Filtering)。另外还有基于知识的推荐系统(包括基于本体和基于案例的推荐系统)是一类特殊的推荐系统,这类系统更加注重知识表征和推理。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

准确率技术

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

分类问题技术

分类问题是数据挖掘处理的一个重要组成部分,在机器学习领域,分类问题通常被认为属于监督式学习(supervised learning),也就是说,分类问题的目标是根据已知样本的某些特征,判断一个新的样本属于哪种已知的样本类。根据类别的数量还可以进一步将分类问题划分为二元分类(binary classification)和多元分类(multiclass classification)。

迁移学习技术

迁移学习是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务,虽然大多数机器学习算法都是为了解决单个任务而设计的,但是促进迁移学习的算法的开发是机器学习社区持续关注的话题。 迁移学习对人类来说很常见,例如,我们可能会发现学习识别苹果可能有助于识别梨,或者学习弹奏电子琴可能有助于学习钢琴。

推荐文章
暂无评论
暂无评论~