Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

参与:高璇、王淑婷、张倩作者:Joe Davison

机器学习=「新瓶装旧酒」的数据统计?No!

最近,关于深度学习和人工智能的一个梗在社交媒体上广为流传,认为二者只是墙上一道镶了崭新边框的裂缝,暗讽机器学习只是重新包装过的统计学,本质上是「新瓶装旧酒」。然而事实真的是这样吗?本文对这种看法提出了异议,认为机器学习 ≠ 数据统计,深度学习为我们处理复杂的非结构化数据问题做出了重大贡献,而人工智能应该得到其应得的赞赏。

随着深度学习的热度开始消退,这个梗最近开始在社交媒体上广为流传,引起了互联网上众人的讥笑。机器学习没什么好激动的,它只是对统计技术的一种补充——这种观点越来越普遍;但问题是这个观点并不正确。

我明白,成为一个极度狂热的深度学习传播者并不时尚。哪怕是 2013 年试图让所有人都知道深度学习机器学习专家,现在再提起这个术语也只有失望,他们现在更倾向于弱化现代神经网络的力量,唯恐人们将他们与还认为「import keras」是万金油的人混为一谈。而他们自认为与后者相比,自己还是相当有优势的。

虽然正如 Yann LeCun 所说,深度学习已经不再是一个时髦的词,但这种矫枉过正的态度已经对人工智能的进步、未来和实用性产生了不良的影响。这一点在关于人工智能寒冬的讨论中体现得尤为明显,在这个寒潮里,人工智能被预言将会像几十年前一样停滞多年。

然而这篇文章并不是对人工智能进入寒冬表示质疑,也不是想说深度学习的进步更应归功于哪个学术团队;相反,它只是想说,人工智能应该得到其应得的赞赏;它发展的水平已经超越超级计算机和更优的数据集;机器学习最近也在深度神经网络和相关工作中取得了巨大成功,代表了世界上最先进的技术水平。

机器学习≠数据统计

「融资的时候, 我们讲人工智能 ;找工作的时候,我们说深度学习;但做项目的时候,我们讲 logistic 回归。」

——推特上每个人都这么说

这篇文章的主题是,机器学习不仅是对数据统计的再包装——这一领域有更大型的计算机和更好听的名字。这个概念来源于统计学的概念和术语,这些概念和术语在机器学习中非常常见,像回归、权重、偏置、模型等等。此外,很多模型近似统计函数:分类模型的 softmax 输出由 logits 组成,使得图像分类器的训练过程成为 logistic 回归。

尽管这种思路在技术层面是对的,但将机器学习作为一个整体看作只是统计学的一个分支还为时过早。这种比较没有什么意义。统计学是处理数据和解释数据的数学领域。机器学习只不过是一种计算算法(诞生于计算机科学)。很多情况下,这些算法在帮助理解数据方面毫无用处,只能帮助某些类型的不可理解的预测建模。例如在强化学习中,算法可能都不会使用已有的数据集。另外,在图像处理中,将图像视为以像素为特征的数据集,从一开始就有点牵强。

问题的关键当然不在于这个荣誉应该属于计算科学家还是属于统计学家;就像其它领域一样,能取得今天的成功是各个学术学科的功劳,其中当然包括统计学和数学。然而,为了正确评估机器学习方法的巨大影响力和潜力,有必要先打破这个错误的观念:现代人工智能的发展,无非就是古老的统计技术拥有了更强大的计算机和更好的数据集。

机器学习无需高深的统计学知识

先听我说,入门机器学习的时候,我幸运地选了一门非常棒的课程,是专门讲深度学习的。这也是我本科计算机课程的一部分。我们要完成的一个项目是在 TensorFlow 上实现和训练 Wasserstein GAN

当时我只修了一门必修的统计学入门课,但我很快就把大部分内容都忘了。不用说,我的统计能力并不强。然而,我却能读懂一篇最先进的生成机器学习模型的论文,并且从头实现了它——通过在 MS Celebs 数据集上训练,生成了能以假乱真的虚拟图像。

在整个课程中,我和同学们成功地训练了针对癌症组织的图像分割、神经机器翻译、基于字符的文本生成以及图像转换的模型,这些模型都采用了近几年刚刚发明的尖端机器学习技术。

然而,你要是问我或者我的同学如何计算一组数据的方差,或者定义边缘概率,我们应该会交个白卷。

这似乎与人工智能只是对古老统计技术的重新包装的观点有些矛盾。

的确,在深度学习课程中,机器学习专家的统计基础可能比计算机专业的本科生更强。一般来说,信息论需要对数据和概率有很深的理解,所以我建议,所有想成为数据科学家或机器学习工程师的人最好能够对统计概念有直观的理解。但问题是:如果机器学习只是统计学的分支,那么没有统计学背景的人怎么能对最前沿的机器学习概念有深入的理解呢?

还应该承认,许多机器学习算法对统计学与概率学背景知识的要求比多数神经网络技术要高,但这些方法通常也被称为统计机器学习或者统计学习,好像是想与常规的统计类别区别开。并且,近年来大多数机器学习中的的炒作性创新都来自神经网络领域,所以这点无关紧要。

当然,机器学习并不是遗世独立的。在现实世界中,任何想要做机器学习的人都可能在研究许多类别的数据问题,因此也需要对统计学科有较深的理解。这并不是说机器学习从不使用或构建统计概念,这说的不是一回事。

机器学习=表示+评估+优化

客观来说,我和我的同学在算法、计算复杂度、优化策略、微积分、线性代数甚至概率论方面基础都很好。我想说的是,比起高级统计学知识,这些与我们正在解决的问题更加相关。

机器学习是一类反复「学习」某类函数近似值的计算算法。华盛顿大学计算科学教授 Pedro Domingos 曾列出构成机器学习算法的三大组成部分:表示、评估和优化。

表示涉及从一个空间到另一个更有效空间的输入传输,解释起来更加容易。请从卷积神经网络的视角考虑这个问题。原始像素在区分猫和狗上是没有用的,所以我们将其转换为更有效的表达形式(如 softmax 输出中的 logits),这样就可以解释和评估了。

评估实际上就是损失函数。你的算法如何有效地将数据转换到另一个更有效的空间上去?softmax 输出和 one-hot 编码标签(分类)到底有多么相似?你能否正确预测展开的文本序列(文本 RNN)的下一个单词?隐藏分布与单位高斯分布的偏离有多远(VAE)?这些问题都告诉你表达函数性能如何;更重要的是,它们定义了它需要学习做什么。

优化是整个拼图的最后一块。一旦有了评估部分,你就可以优化表达函数,以改进评估标准。在神经网络中,这意味着使用随机梯度下降的一些变体来根据给定的损失函数更新网络的权重和偏置。你有世界上最好的图像分类器(起码 2012 年的 Geoffrey Hinton 有)。

在训练图像分类器时,除了定义适当的损失函数外,学习的表达函数是否有逻辑输出无关紧要。像 logistic 回归这样的统计学术语在我们讨论模型空间时确实也有些作用,但在优化问题和数据理解问题上都没有被重新定义。

附言:人工智能这个词挺蠢的。人工智能问题只是计算机目前还不善解决的一个问题。在十九世纪,机械计算机也曾被认为是智能的。现在这个术语与深度学习联系如此紧密,我们就开始说通用人工智能(AGI)是比先进的模式匹配机制更智能的东西。然而,我们对通用智能还没有一致的定义或理解。AI 所做的唯一一件事就是激发人们对所谓的「奇点」或类似终结者的杀手机器人的恐惧。我希望我们可以停止使用这样一个空洞的、耸人听闻的术语来替代真正的技术。

深度学习的技术

几乎所有深度神经网络的内部工作都忽略了深度学习的统计特性。全连接点由权重和偏置组成,但卷积层呢?整流激活层?批标准化?残差层?Dropout?存储和注意力机制

这些创新对于高性能深度网络的发展至关重要,但它们与传统的统计技术并不完全一致(可能因为它们根本不是统计技术)。如果你不相信我,可以试着告诉统计学家你的模型过拟合了,然后问他们把模型的 1 亿个参数砍掉一半是否行得通。

我们甚至不讨论模型的可解释性。

超过一亿个变量的回归——没问题吗?

深度网络和传统统计模型在规模上是有差异的。深度神经网络是巨大的。例如,卷积网络 VGG-16 大约有 1.38 亿个参数。你觉得你的普通学术导师会如何回应一个想要对 1 亿多个变量进行多元回归的学生?这个想法很荒谬,因为训练 VGG-16 不是多元回归,而是机器学习问题。

新前沿

在过去的几年里,你可能看了无数宣扬机器学习可以完成很酷的任务的论文、帖子、文章,所以我不再赘述了。然而,我要提醒你,深度学习不仅比以前的技术更重要,它还能帮助我们解决一系列全新的问题。

在 2012 年之前,涉及非结构化和半结构化数据的问题充其量只是一项挑战。仅可训练的 CNN 和 LSTM 就在这方面实现了巨大飞跃。在计算机视觉自然语言处理、语音转录等领域都取得了相当大的进步,并且在人脸识别自动驾驶和 AI 对话等技术方面有了很大的提高。

确实,大多数机器学习算法最终都要将模型拟合到数据——从这个角度看,这是个统计过程。航天飞机也不过是一个带翅膀的飞行器,但我们并没有看到有人嘲笑美国宇航局在 20 世纪探索太空,也没有人认为这是对飞机进行重新包装而已。

与太空探索一样,深度学习的出现并没有解决世界上所有的问题。在许多领域,特别是在「人工智能」领域,仍有很多的事情需要我们去做。也就是说,它为我们处理复杂的非结构化数据问题做出了重大贡献。机器学习会继续引领世界技术进步和创新的前沿,而不仅仅是墙上一道镶了崭新边框的裂缝。

原文链接:https://towardsdatascience.com/no-machine-learning-is-not-just-glorified-statistics-26d3952234e3

入门统计机器学习统计学深度学习
4
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

自动驾驶技术技术

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

权重技术

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。

模式匹配技术

在计算机科学中,模式匹配就是检查特定序列的标记是否存在某种模式的组成部分。 与模式识别相比,匹配通常必须是精确的。 模式通常具有序列或树结构的形式。 模式匹配的使用包括输出令牌序列内的模式的位置(如果有的话),输出匹配模式的某个分量,以及用另一个令牌序列(即搜索和替换)替换匹配模式。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

高斯分布技术

正态分布是一个非常常见的连续概率分布。由于中心极限定理(Central Limit Theorem)的广泛应用,正态分布在统计学上非常重要。中心极限定理表明,由一组独立同分布,并且具有有限的数学期望和方差的随机变量X1,X2,X3,...Xn构成的平均随机变量Y近似的服从正态分布当n趋近于无穷。另外众多物理计量是由许多独立随机过程的和构成,因而往往也具有正态分布。

神经机器翻译技术

2013 年,Nal Kalchbrenner 和 Phil Blunsom 提出了一种用于机器翻译的新型端到端编码器-解码器结构 [4]。该模型可以使用卷积神经网络(CNN)将给定的一段源文本编码成一个连续的向量,然后再使用循环神经网络(RNN)作为解码器将该状态向量转换成目标语言。他们的研究成果可以说是神经机器翻译(NMT)的诞生;神经机器翻译是一种使用深度学习神经网络获取自然语言之间的映射关系的方法。NMT 的非线性映射不同于线性的 SMT 模型,而且是使用了连接编码器和解码器的状态向量来描述语义的等价关系。此外,RNN 应该还能得到无限长句子背后的信息,从而解决所谓的「长距离重新排序(long distance reordering)」问题。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

人脸识别技术

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

损失函数技术

在数学优化,统计学,计量经济学,决策理论,机器学习和计算神经科学等领域,损失函数或成本函数是将一或多个变量的一个事件或值映射为可以直观地表示某种与之相关“成本”的实数的函数。

TensorFlow技术

TensorFlow是一个开源软件库,用于各种感知和语言理解任务的机器学习。目前被50个团队用于研究和生产许多Google商业产品,如语音识别、Gmail、Google 相册和搜索,其中许多产品曾使用过其前任软件DistBelief。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

随机梯度下降技术

梯度下降(Gradient Descent)是遵循成本函数的梯度来最小化一个函数的过程。这个过程涉及到对成本形式以及其衍生形式的认知,使得我们可以从已知的给定点朝既定方向移动。比如向下朝最小值移动。 在机器学习中,我们可以利用随机梯度下降的方法来最小化训练模型中的误差,即每次迭代时完成一次评估和更新。 这种优化算法的工作原理是模型每看到一个训练实例,就对其作出预测,并重复迭代该过程到一定的次数。这个流程可以用于找出能导致训练数据最小误差的模型的系数。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

过拟合技术

过拟合是指为了得到一致假设而使假设变得过度严格。避免过拟合是分类器设计中的一个核心任务。通常采用增大数据量和测试样本集的方法对分类器性能进行评价。

图像处理技术

图像处理是指对图像进行分析、加工和处理,使其满足视觉、心理或其他要求的技术。 图像处理是信号处理在图像领域上的一个应用。 目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

WGAN技术

就其本质而言,任何生成模型的目标都是让模型(习得地)的分布与真实数据之间的差异达到最小。然而,传统 GAN 中的判别器 D 并不会当模型与真实的分布重叠度不够时去提供足够的信息来估计这个差异度——这导致生成器得不到一个强有力的反馈信息(特别是在训练之初),此外生成器的稳定性也普遍不足。 Wasserstein GAN 在原来的基础之上添加了一些新的方法,让判别器 D 去拟合模型与真实分布之间的 Wasserstein 距离。Wassersterin 距离会大致估计出「调整一个分布去匹配另一个分布还需要多少工作」。此外,其定义的方式十分值得注意,它甚至可以适用于非重叠的分布。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

信息论技术

信息论是在信息可以量度的基础上,研究有效地和可靠地传递信息的科学,它涉及信息量度、信息特性、信息传输速率、信道容量、干扰对信息传输的影响等方面的知识。通常把上述范围的信息论称为狭义的信息论,又因为它的创始人是香农,故又称为香农信息论。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

推荐文章
暂无评论
暂无评论~