王宇欣 路参与

工业人工智能的未来会怎样?

本文从富士康的自动化生产入手,介绍了人工智能在制造业中的「用武之地」和可能对制造业造成的改变。作者提出完整的工业人工智能系统包括:传感器网络、大数据、机器学习、规划和调度,以及机器人。

几年前,我参加了富士康 CTO 的一次演讲。当他提到富士康是当时第三大机器人制造商时,我有些惊讶。「事实上,」他补充道,「我们已经建造了一个全自动化的工厂」。他向我们展示了一个视频片段:工厂中,移动机器人四处奔走,机械臂在各个组件上忙得热火朝天,传送带流畅运行。工厂里一个人都没有。我被震惊到了。时至今日,富士康拥有 6 家全自动化工厂、超过 50000 台机器人

为什么像富士康这样以庞大工人群体而闻名的制造商(富士康拥有超过 100 万名员工),会寻求自动化呢?此举背后有很多原因。

大多数公众认为制造商倾向于使用廉价劳动力,但事实却恰恰相反,它们更倾向于在无需人力的情况下完成工作。这不仅仅是为了降低成本。在制造业中,人类的效率要远低于机器。在机器取代人力的每一步过程中,工人疲劳、错误和身体伤害造成的影响逐渐减少。此外,生产精度也在上升,生产过程可以得到标准化。

批量生产需要标准化。生产循环中的工人越少,就可以实现越多的质量控制。生产标准电子产品的公司则需要高精度和质量控制。这是机器优于人类的地方。此外,机器流程是可重复的。一旦完成编程,就不需要对机器进行重复训练,而对新工人或忘记流程的工人还需要进行重复培训。换句话说,对于简单的制造过程,机器拥有的知识是终身的。此外,假设机器成本相对较低,那么我们可以轻松复制编程机器,并扩展其使用范围。

更低的机器成本和机器人成本进一步推动了自动化的发展。当所有因素聚集在一起时,我们将看到不可逆转的工业自动化浪潮。

但是这一过程存在挑战。一旦我们在工厂安装机器来承担过去由人类完成的工作,那么新的问题将会出现:机器可能会出错,因此机器需要人力进行监控(虽然你无需担心机器会缺乏工作动力)。此外,机器也会感到疲倦(零件磨损),甚至会发生故障。这时候就需要使用监控、异常检测和维护等手段了。

过去一直是人类扮演着监视和控制的角色:用肉眼进行检测、审查数据或决定何时进行维护。但是,当数据量显著增加时,人类无法胜任这项任务。在机器上安装数以千计的传感器,发送实时温度、压力和振动测量等数据,计算服务器上充斥着数据。事实上,对于一个拥有 1000 个传感器(传感器每 10 秒发送一次信号)的工厂来说,每小时就有超过 360,000 条数据流入。1 天内就有超过 100 万条数据。制造商已进入大数据时代。

对于从事互联网和移动业务的人来说,大数据已经成为日常。我在 eBay 工作时,我们每天要处理数以 TB 计的数据。但对于制造商来说,大数据是一种新现象,也是他们刚开始掌握的东西。首先,构建一个收集、存储和处理数据的数据基础架构至关重要。

在数据收集方面,我们拥有和互联网(或局域网)互联的传感器和机器。这些设备将向服务器发送温度、湿度、压力、机器状况、运行时间、振动等测量值信息。该系统还收集半成品的数据,并在处理结束时收集产品缺陷数据。

在数据存储方面,首先,公司必须决定数据存储的位置:云端还是本地?这一决定与公司拥有的存储空间以及数据需求的计算能力有关。其次,公司必须决定数据存储的方式:将数据放在数据库(什么样的数据库)还是非数据库中,比如高度分布式文件系统(比如 Hadoop)?这种考量涉及到处理数据的频率以及响应的速度。

在数据处理方面,应该将更多的数据发送到服务器中还是保存在本地?这一决定直接影响计算的发生地。有些人提倡边缘计算。这究竟是一时的风潮还是大势所趋?将数据发送到服务器后,我们需要数据工程师清理数据并进行聚合。

一旦完成数据基础架构的构建之后,我们需要进行下一步:理解数据。人工智能在这一步将大展拳脚。人工智能的核心是机器学习,智能系统从数据中学习并从更新的数据中获取新模式。虽然人类也可以读取数据,但却无法在一秒钟内处理数百万个数据点。机器学习可以做到这一点,并且可以重复进行。

因此,人工智能可实现快速响应、实时监控和预测性维护等功能。例如,异常检测有助于快速检测问题并进行持续监测,从而减少浪费和系统中断。自适应系统可以更早地检测到问题(比如某个玻璃瓶存在裂缝),并及时调整步骤。它减少了停工时间,为制造商省了一大笔钱。

另一个重要的方面是预测性维护。通过分析数据,我们知道机器何时以及如何发生故障。西门子已经部署了一个名为 MindSphere 的系统,该系统收集运行数据和传感器测量值,以进行预测性维护。

通过了解在哪个阶段或在什么条件下会造成产品缺陷,人工智能可以帮助改进生产过程。机器学习模型可以帮助我们检测这种模式。

人工智能有助于自适应控制:在出现问题或情况发生变化时采取行动。这意味着分析数据、检测导致缺陷或生产减缓的原因,以及使用数据来提高效率。

凭借强大的能力,人工智能可以减少机器故障、生产时间损失以及延期交付等问题的出现,从而帮助制造商节省数百万美元。

另一个需要人工智能的领域是生产规划。人工智能的一个研究领域是规划调度:如何使智能体遵循一系列步骤并最终实现目标。人工智能调度被用于 Kiva 机器人中,这些机器人在亚马逊的仓库中四处移动,需要协调任务。工厂在生产许多零件并需要协调生产时,智能规划就非常有用了。规划系统可以调度每个组件并使其可用于下一个生产阶段。

最终,人工智能是机器人不可或缺的一部分。除了抓取和移动能力之外,机器人还需要计算机视觉、推理、规划、学习等能力。自动化工厂需要的是能够处理复杂任务、像人类一样灵巧的机器人或机械臂。

因此,完整的工业人工智能系统包括:传感器网络、大数据、机器学习规划调度,以及机器人

现在,很多制造商离这些完整能力还很遥远。安装传感器、使机器发送数据是第一步。这也是 IoT(物联网)现在变得流行的原因。自适应系统的集成——基于组件情况调整生产过程的系统仍然是新玩意。

机器人并不像我们希望的那样万能。机械臂远不如人手灵活。在出现复杂图案的情况下,计算机视觉可能会失败。

公司之间的人才争夺战也进行的如火如荼。鉴于人工智能工程师和科学家的短缺,大型互联网和服务公司正在大量引入所有他们能够获得的候选人。基本上没给制造商留下多少可用之才,与设计 app、增加点击量或通过更好的定位来提高广告收入相比,制造商这里的相关工作并不是那么有吸引力。制造商如何吸引人才是一个大问题。

工业人工智能的未来是什么?随着大数据基础设施和机器学习逐渐趋于成熟,工厂将会对这些「新事物」敞开大门,以帮助提高工厂效率、降低成本。每一个工厂都将采用大数据和机器学习方法来收集、处理和分析所有数据。我们将看到物联网在工厂中的普及,以及机器人无人机甚至是机器语音接口等技术日益广泛的使用。人工智能已成为制造过程中不可或缺的一部分。

最后一个问题:制造工人将何去何从?人类并非为重复性的工作而生。长时间的重复劳动会使工人丧失注意力、感到疲倦、需要休息。重复性的流水线工作不利于工人的身心健康。人工智能将把人们从这种束缚中解放出来,让他们有机会从事服务、创意艺术和计算机工程方面的工作。工业岗位的流失只是技术迁移的另一波浪潮。类似于从土地迁移到工厂的农场工人,我们将看到一波制造业工人的迁徙浪潮——从工厂迁进办公室。制造业岗位的逐渐消失预示着服务业的崛起,这完成了 Tofler 曾经观察到的第三次浪潮。生活在这样一个时代着实令人兴奋!

原文链接:https://www.linkedin.com/pulse/ai-manufacturing-industrial-junling-hu/?from=timeline&isappinstalled=0

产业工业工业机器人
1
相关数据
机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

调度技术

调度在计算机中是分配工作所需资源的方法。资源可以指虚拟的计算资源,如线程、进程或数据流;也可以指硬件资源,如处理器、网络连接或扩展卡。 进行调度工作的程序叫做调度器。调度器通常的实现使得所有计算资源都处于忙碌状态,允许多位用户有效地同时共享系统资源,或达到指定的服务质量。 see planning for more details

异常检测技术

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。 通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。 异常也被称为离群值、新奇、噪声、偏差和例外。

规划技术

人工智能领域的「规划」通常是指智能体执行的任务/动作的自动规划和调度,其目的是进行资源的优化。常见的规划方法包括经典规划(Classical Planning)、分层任务网络(HTN)和 logistics 规划。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

机器人技术技术

机器人学(Robotics)研究的是「机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理」 [25] 。 机器人可以分成两大类:固定机器人和移动机器人。固定机器人通常被用于工业生产(比如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。之前章节中提及的技术都可以在机器人上得到应用和集成,这也是人工智能领域最早的终极目标之一。

无人机技术

无人机(Uncrewed vehicle、Unmanned vehicle、Drone)或称无人载具是一种无搭载人员的载具。通常使用遥控、导引或自动驾驶来控制。可在科学研究、军事、休闲娱乐用途上使用。

移动机器人技术

移动机器人是一种能够移动的自动机器。移动机器人具有在其环境中移动的能力,并且不固定到一个物理位置。移动机器人可以“自动”主要是指它们能够在没有物理或机电引导装置的情况下导航非受控环境。相比之下,传统的工业机器人或多或少都是固定的(stationary)机械臂或抓取组件。

推荐文章
暂无评论
暂无评论~