Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

语音合成领域的首个完全端到端模型,百度提出并行音频波形生成模型ClariNet

语音合成(Text-to-Speech,TTS)是将自然语言文本转换成语音音频输出的技术,在 AI 时代的人机交互中扮演至关重要的角色。百度硅谷人工智能实验室最近提出了一种全新的基于 WaveNet 的并行音频波形(raw audio waveform)生成模型ClariNet,合成速度提升了数千倍,可以达到实时的十倍以上。此外,这也是语音合成领域第一个真正的端到端模型:单个神经网络,直接从文本到原始音频波形。

最近,百度硅谷人工智能实验室的研究员提出了 ClariNet,一种全新的基于 WaveNet 的并行音频波形(raw audio waveform)生成模型。WaveNet 是能够完美模仿人类声音的最前沿语音合成技术(Google I/O 大会所展示的超逼真合成语音的背后技术)。自从其被提出,就得到了广泛的离线应用。但由于其自回归(autoregressive)的特点,只能按时间顺序逐个生成波形采样点,导致合成速度极慢,无法在 online 应用场合使用。ClariNet 中所提出的并行波形生成模型基于高斯逆自回归流(Gaussian inverse autoregressive flow),可以完全并行地生成一段语音所对应的原始音频波形。比起自回归的 WaveNet 模型,其合成速度提升了数千倍,可以达到实时的十倍以上。

对比 DeepMind 稍早提出的 Parallel WaveNet,ClariNet 中的概率分布蒸馏(probability density distillation)过程更加简单优美,直接闭式地(closed-form)来计算训练目标函数 KL 散度(KL divergence),大大简化了训练算法,并且使得蒸馏过程效率极高——通常 5 万次迭代后,就可以得到很好的结果。同时作者还提出了正则化 KL 散度的办法,大大提高了训练过程的数值稳定性,使得结果简单易训练(注:Clari 在拉丁语中是 clear, bright 的意思)。而 Parallel WaveNet 由于需要蒙特卡洛采样来近似 KL 散度,使得梯度估计的噪音很大,训练过程很不稳定,外界极难重现 DeepMind 的实验结果。

更值得注意的是,ClariNet 还是语音合成领域第一个完全端到端的系统,可以通过单个神经网络,直接将文本转换为原始的音频波形。先前为业界所熟知的「端到端」语音合成系统(比如 Google 提出的 Tacotron,百度之前提出的 Deep Voice 3),实际是先将文本转换为频谱(spectrogram),然后通过波形生成模型 WaveNet 或者 Griffin-Lim 算法,将频谱转换成原始波形输出。这种方法由于文本到频谱的模型和 WaveNet 是分别训练优化的,往往导致次优的结果。而百度研究员提出的 ClariNet,则是完全打通了从文本到原始音频波形的端到端训练,实现了对整个 TTS 系统的联合优化,比起分别训练的模型,在语音合成的自然度上有大幅提升(参见 合成语音示例)。另外,ClariNet 是全卷积模型,训练速度比起基于循环神经网络(RNN)的模型要快 10 倍以上。

ClariNet 的网络结构如下图所示。它使用基于注意力机制(Attention)的编码器-解码器(Encoder-Decoder)模块来学习文本字符与频谱帧之间的对齐关系。解码器的隐状态(hidden states)被送给 Bridge-net 来进行时序信息处理和升采样(upsample)。最终 Bridge-net 的隐状态被送给音频波形生成模块(Vocoder),用来最终合成原始音频波形。

论文:ClariNet: Parallel Wave Generation in End-to-End Text-to-Speech

  • 论文地址:https://arxiv.org/pdf/1807.07281.pdf

  • 合成语音示例:https://clarinet-demo.github.io/



入门语音合成百度生成模型
1
相关数据
语音合成技术

语音合成,又称文语转换(Text to Speech)技术,是将人类语音用人工的方式所产生,能将任意文字信息实时转化为标准流畅的语音朗读出来,相当于给机器装上了人工嘴巴。它涉及声学、语言学、数字信号处理、计算机科学等多个学科技术,是信息处理领域的一项前沿技术,解决的主要问题就是如何将文字信息转化为可听的声音信息,也即让机器像人一样开口说话。

注意力机制技术

我们可以粗略地把神经注意机制类比成一个可以专注于输入内容的某一子集(或特征)的神经网络. 注意力机制最早是由 DeepMind 为图像分类提出的,这让「神经网络在执行预测任务时可以更多关注输入中的相关部分,更少关注不相关的部分」。当解码器生成一个用于构成目标句子的词时,源句子中仅有少部分是相关的;因此,可以应用一个基于内容的注意力机制来根据源句子动态地生成一个(加权的)语境向量(context vector), 然后网络会根据这个语境向量而不是某个固定长度的向量来预测词。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

噪音技术

噪音是一个随机误差或观测变量的方差。在拟合数据的过程中,我们常见的公式$y=f(x)+\epsilon$中$\epsilon$即为噪音。 数据通常包含噪音,错误,例外或不确定性,或者不完整。 错误和噪音可能会混淆数据挖掘过程,从而导致错误模式的衍生。去除噪音是数据挖掘(data mining)或知识发现(Knowledge Discovery in Database,KDD)的一个重要步骤。

目标函数技术

目标函数f(x)就是用设计变量来表示的所追求的目标形式,所以目标函数就是设计变量的函数,是一个标量。从工程意义讲,目标函数是系统的性能标准,比如,一个结构的最轻重量、最低造价、最合理形式;一件产品的最短生产时间、最小能量消耗;一个实验的最佳配方等等,建立目标函数的过程就是寻找设计变量与目标的关系的过程,目标函数和设计变量的关系可用曲线、曲面或超曲面表示。

规范化技术

规范化:将属性数据按比例缩放,使之落入一个小的特定区间,如-1.0 到1.0 或0.0 到1.0。 通过将属性数据按比例缩放,使之落入一个小的特定区间,如0.0到1.0,对属性规范化。对于距离度量分类算法,如涉及神经网络或诸如最临近分类和聚类的分类算法,规范化特别有用。如果使用神经网络后向传播算法进行分类挖掘,对于训练样本属性输入值规范化将有助于加快学习阶段的速度。对于基于距离的方法,规范化可以帮助防止具有较大初始值域的属性与具有较小初始值域的属相相比,权重过大。有许多数据规范化的方法,包括最小-最大规范化、z-score规范化和按小数定标规范化。

生成模型技术

在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。 它给观测值和标注数据序列指定一个联合概率分布。 在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。

人机交互技术

人机交互,是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室。

推荐文章
暂无评论
暂无评论~