权威举办 | “人工智能与智能控制”学科前沿讲习班

随着人工智能和机器人技术的发展,对控制理论研究的深度和广度得到开拓,形成了智能控制理论。当下,智能控制的应用研究十分活跃,各种智能决策系统、专家系统、学习系统和故障诊断系统等已被应用于各类工业过程控制系统、智能机器人系统和智能化生产系统。智能控制技术呈现出的强大生命力,已引起世界各国专家学者的关注。

中国自动化学会将以“人工智能与智能控制”为主题,于2018年7月28日-7月29日在湖北武汉·华中科技大学举办第6期『智能自动化学科前沿讲习班』。此次讲习班由华中科技大学自动化学院院长、图像信息处理与智能控制教育部重点实验室主任曾志刚教授和清华大学胡晓林副教授共同担任学术主任,邀请业界多位知名专家作主题报告,分享交流智能控制的学术前沿、产业发展及应用实现。

讲习班内容安排

题目:智能控制算法

讲者:陈俊龙,澳门大学讲座教授,国家千人学者,中国自动化学会副理事长,IEEE Fellow,AAAS Fellow,IAPR Fellow,CAA Fellow

摘要:智能控制是来解决传统控制方法难以解决的非线性、高度不确定性、信息不完全性、或者因人而产生复杂性等的具有复杂控制任务的问题。此次报告是讨论基于人工神经网络理论、模糊数学理论、计算智能理论、及模式识别理论等为基础而衍生出来的智能控制方法。课题包括:(1)神经网络控制;(2)模糊控制;(3)强化学习控制;(4)智能自适应控制;(5)基于遗传算法的智能控制;(6)混合智能的控制。

报告题目:时间非一致性与随机最优控制

讲者张纪峰,中科院系统科学研究所所长,中国自动化学会副理事长,国家杰青,IEEE Fellow,IFAC Fellow,CAA Fellow

摘要对经典的最优控制问题,相应于给定时间-状态初始对的最优控制,将沿着最优轨迹保持最优;即以最优轨迹上任何一点作为新的时间-状态初始对,原有最优控制在后续时间区间上的限制,将是相应于此新初始对的最优控制。这一性质称为最优控制的时间一致性,它可由Bellman最优性原理推得。最优控制的时间一致性虽然在经典最优控制理论中很少被提及,但事实上它是一个本质性的概念,现有的Bellman动态规划理论主要依赖于时间一致性这一性质。 然而,现实世界中存在大量动态优化问题,对它们而言,Bellman最优性原理不再成立,进而最优控制的时间一致性也将丢失,即所考虑问题是时间非一致的;如下几种情形经常被文献提及:(i) 指标泛函中的贴现函数是非指数的,(ii) 指标泛函中存在条件期望的非线性项,(iii) 指标泛函是初始状态显式依赖的。这些现象广泛存在于经济学和金融学领域,比如双曲贴现函数,准几何贴现函数,均值-方差效用函数等。 本报告将详细介绍时间非一致性,具体地,将揭示时间非一致性自Adam Smith以来的定性分析和概念萌芽,阐述其在金融学和经济学中的定量分析和成功运用,描述了系统控制领域的相关研究进展,强调了研究随机最优控制领域内时间非一致的必要性。

报告题目:类脑计算及类脑计算系统

讲者:施路平,清华大学教授,博士生导师,清华大学类脑计算研究中心主任,国家千人计划特聘教授

摘要:类脑计算系统是借鉴人脑信息处理方式,打破“冯•诺依曼”架构束缚,适于实时处理非结构化信息、具有学习能力的超低功耗新型计算系统。当前欧盟、美国等均斥巨资长期支持此研究,但是这项研究目前均处于起步阶段,尚未形成公认技术方案。此报告将从为什么(why)?做什么(what)?和怎样做(how)?三方面来分析类脑计算系统研究,分析发展类脑计算的挑战和前景。

报告题目:基于视触觉融合的目标识别与灵巧操作

讲者孙富春,清华大学教授,博士生导师,计算机科学与技术系学术委员会主任,国家杰青

摘要为实现机器人柔和灵巧的操作能力,下一代机器人需装备多模态的分布式感知与融合模块,有望突破像人一样的跨模态信息感知、表征/融合和动作行为。本报告介绍了清华大学课题组研制的高分辨率四模态传感装置和装备有四模态人工皮肤/类肌肉驱动的五指灵巧手,该灵巧手的分布式传感装置包含了微视觉、压力觉/滑觉和温度觉传感器。报告给出了研究团队在跨模态的视触觉信息的处理方面取得理论成果,包括基于视触觉信息的目标识别以及感知-动作映射问题的深度学习和经验学习方法。最后是实验结果分析和未来的研究展望。

报告题目:基于FPGA的深度学习处理器

讲者汪玉,清华大学长聘副教授,博士生导师,国家优青,深鉴科技联合创始人

摘要深度学习的应用日益广泛。相比于传统的CPU/GPU平台,针对定制计算结构能够提供更高的计算能效。但是,基于FPGA的深度学习加速器面临开发周期长,性能受限等问题。本报告将通过总结已有工作,结合实际设计经验,总结针对深度学习加速器的设计思路,之后介绍基于FPGA的高能效、快速部署的深度学习处理器结构和部署流程[FPGA 2016+2017]。其中压缩和量化技术可以去除算法中的冗余操作,减少系统计算和存储的需求,同时量化还能够提升FPGA系统的峰值计算能力。由于CNN和DNN/RNN在计算和存储模式的本质差异,针对CNN、DNN/RNN分别设计了两种体系结构与相应的指令、编译系统。基于赛林思的平台,CNN和LSTM的平台均取得了比嵌入式和桌面GPU更好的能量效率(>60GOPS/W)。

报告题目AI时代视觉大数据的智能分析

讲者:王亮,中科院自动化研究所研究员,博士生导师,模式识别国家重点实验室副主任,国家杰青,IAPR Fellow

摘要本报告首先简介人工智能的概念和现状,然后介绍其重要的一个分支领域-计算机视觉。视觉大数据分析是模式识别的前沿方向。近年来,深度学习已经在语音、视觉、自然语言处理等领域取得了很大成功,接下来重点回顾深度学习历史及其在视觉大数据分析中的应用进展。针对深度神经网络在结构、功能、泛化性等存在的问题,进一步探索模拟认知过程中的注意、记忆等机制,研究深度认知神经网络理论和方法。最后,展望了几个未来可能的研究方向。

报告题目:生物启发的视觉计算

讲者:张兆翔,中科院自动化研究所研究员,博士生导师,类脑智能科研中心研究员

摘要深度学习为代表的模式识别方法在多种视觉应用中取得了显著成功,甚至媲美人的性能,但是与生物模式识别系统相比,现有的深度学习方法在自适应性、可泛化性和多任务协作方面依旧存在明显缺陷。从脑的神经信息处理机制、认知方法和行为特性上寻求启发有望指导更好的神经网络建模,实现更为鲁棒的类人学习,具有重要研究意义与应用前景。本报告将对近年来生物启发的视觉计算工作的回顾基础上,对我们近期开展的脑启发的神经网络建模与学习方法开展研究,具体报告内容包括神经网络的结构建模、面向多任务的神经网络架构学习、视听模态分析与整合、知识蒸馏和多智能体协同等。

报告题目:基于新型电子突触器件的类脑计算研究

讲者吴华强,清华大学教授,微纳电子系副系主任,北京市未来芯片技术高精尖创新中心副主任

摘要人工智能的研究和应用已经取得了突飞猛进的发展,但是运行人工智能深度神经网络算法的计算平台主要是超级计算机群(成百上千个CPU和GPU),不但需要巨大的硬件投入,而且占用的空间和消耗的能源也非常可观。受限于存储计算分离对芯片性能的限制,同时CMOS工艺微缩速度放缓,以及人工智能应用对计算存储需求的不断提升,当前的技术将面临诸多新的挑战。在这一背景下,新器件的出现变得至关重要,通过引入新原理的半导体器件,不但可以拓展芯片的功能,甚至可以颠覆传统电路理论,突破当前芯片面临的能效、速度瓶颈,大幅提升芯片性能。基于过渡族金属氧化的忆阻器件显示出了优越的存算一体的特性,能够规避存储和计算之间数据搬运的功耗并且能够实现大规模集成,进而实现高性能计算。 展望未来,智能社会即将来临!面向未来的智能芯片,最底层的器件需要具备哪些特性呢?

报告题目利用机器人的自然动力学来实现高能效的移动

讲者赵明国,清华大学副教授,机器人控制实验室主任

摘要服务机器人的应用中常常面临一个重要的问题:使用轮子还是腿来完成运动。两个方法都各有优缺点。在铺设好的道路环境中,轮式机器人因其简单高效而被大量采用,而在复杂多变的环境中,腿式机器人常常是最佳选择。无论采用哪种运动方式,能量效率都是我们最关心的问题之一。因此,在这两种机器人的应用中都有一个共同的主题:利用机器人的自然动力学来实现高能效的移动。 本报告将介绍清华大学机器人控制实验室在这方面做的一些研究工作,即先利用被动步行原理实现高能效的双足运动,然后通过反馈控制进一步提高机器人的稳定性,报告的另外一部分也将向您展示如何通过车把转向控制实现无人驾驶自行车的高能量效率。在这些例子中,我们采用了一种非常简单但非常规的控制方法,它们的共同特点是寻找并利用系统的自然动力学。在两足机器人的研究中,我们考虑的能量补充机制和稳定控制方法,并构造一个参数激励系统,最后实现了一种方法来改善反馈控制系统的稳定性。这种方法受混沌控制的启发,但也不局限与混沌系统,我们希望这种方法可以作为实现可穿戴的软体外骨骼的一种理论基础。在自主驾驶自行车的研究中,我们使用车吧转向过程中的离心力和重力的平衡来实现自行车的平衡控制,并实现了一个一个稳定、灵活、高效的无人驾驶自行车系统,这种技术可以应用于个人智能设备和自动驾驶系统。

报告题目:神经网络的攻击与防御

讲者胡晓林,清华大学副教授

摘要神经网络在各种任务上取得了巨大的成功,但是人们发现它很脆弱:对输入数据做一点微小的扰动,就会导致输出结果完全不同。这种特殊扰动后的输入数据称为对抗样本,而这种操作被称为对神经网络的攻击。有攻击就应该有防御。防御的意思是构造方法使得神经网络不被对抗样本欺骗。我将介绍这个领域的历史和最新进展,并对未来进行展望。

讲习班致辞

曾志刚,华中科技大学教授、博士生导师,自动化学院院长,国家杰出青年科学基金获得者,教育部长江学者特聘教授,万人计划科技创新领军人才,图像信息处理与智能控制教育部重点实验室主任。先后担任IEEE Transactions on Neural Networks;IEEE Transactions on Cybernetics; IEEE Transactions on Fuzzy Systems;Cognitive Computation;Neural Networks;Applied Soft Computing;自动化学报和控制工程的编委。担任IEEE Transactions on Neural Networks and Learning Systems;Neural Computing & Applications;Neurocomputing;International Journal of Fuzzy Systems;Neural Processing Letters 等5个SCI源国际学术期刊的客座编委。担任过三十多个国际学术会议的大会主席,程序委员会主席,出版主席等。

报名及注册费
1、本期讲习班限报 200 人,根据缴费先后顺序录取,报满为止;

2、2018年07月26日(含)前注册并缴费:自动化学会会员2000 元/人,非会员报名同时入会2500元/人;现场缴费:会员2500元/人,非会员3000元/人(包含提前报名现场缴费、现场报名现场缴费);在校生参会可享受学生优惠价格1200元/人

3、同一单位3人及以上团体报名,按会员标准缴费;

4、即日起至 2018年7月26日,点击「报名地址」进行注册报名。

联系方式

电话:010-62522472手机:18811748370

邮箱:caa_assia@163.com微信:AI_college

THU数据派
THU数据派

THU数据派"基于清华,放眼世界",以扎实的理工功底闯荡“数据江湖”。发布全球大数据资讯,定期组织线下活动,分享前沿产业动态。了解清华大数据,敬请关注姐妹号“数据派THU”。

入门智能自动化讲习班人工智能中国自动化学会
1
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

自动驾驶技术技术

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

动态规划技术

动态规划(也称为动态优化),是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划将复杂的问题分解成一系列相对简单的子问题,只解决一次子问题并存储它的解决方案(solution),下一次遇到同样的子问题时无需重新计算它的解决方案,而是简单地查找先前计算的解决方案,从而节省计算时间。动态规划适用于有最优子结构(Optimal Substructure)和重叠子问题(Overlapping Subproblems)性质的问题。

专家系统技术

专家系统(ES)是人工智能最活跃和最广泛的领域之一。专家系统定义为:使用人类专家推理的计算机模型来处理现实世界中需要专家作出解释的复杂问题,并得出与专家相同的结论。简言之,如图1所示,专家系统可视作“知识库(knowledge base)”和“推理机(inference machine)” 的结合。

感知技术

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

参数技术

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

控制理论技术

控制理论是工程学与数学的跨领域分支,主要处理在有输入信号的动力系统的行为。系统的外部输入称为“参考值”,系统中的一个或多个变数需随着参考值变化,控制器处理系统的输入,使系统输出得到预期的效果。 控制理论一般的目的是借由控制器的动作让系统稳定,也就是系统维持在设定值,而且不会在设定值附近晃动。

模式识别技术

模式识别(英语:Pattern recognition),就是通过计算机用数学技术方法来研究模式的自动处理和判读。 我们把环境与客体统称为“模式”。 随着计算机技术的发展,人类有可能研究复杂的信息处理过程。 信息处理过程的一个重要形式是生命体对环境及客体的识别。其概念与数据挖掘、机器学习类似。

计算机视觉技术

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

机器人技术技术

机器人学(Robotics)研究的是「机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理」 [25] 。 机器人可以分成两大类:固定机器人和移动机器人。固定机器人通常被用于工业生产(比如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。之前章节中提及的技术都可以在机器人上得到应用和集成,这也是人工智能领域最早的终极目标之一。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

映射技术

映射指的是具有某种特殊结构的函数,或泛指类函数思想的范畴论中的态射。 逻辑和图论中也有一些不太常规的用法。其数学定义为:两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有有唯一的一个元素y与它对应,就这种对应为从A到B的映射,记作f:A→B。其中,y称为元素x在映射f下的象,记作:y=f(x)。x称为y关于映射f的原象*。*集合A中所有元素的象的集合称为映射f的值域,记作f(A)。同样的,在机器学习中,映射就是输入与输出之间的对应关系。

对抗样本技术

对抗样本是一类被设计来混淆机器学习器的样本,它们看上去与真实样本的几乎相同(无法用肉眼分辨),但其中噪声的加入却会导致机器学习模型做出错误的分类判断。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

控制论技术

控制论是一门跨学科研究, 它用于研究控制系统的结构,局限和发展。在21世纪,控制论的定义变得更加宽泛,主要用于指代“对任何使用科学技术的系统的控制”。由于这一定义过于宽泛,许多相关人士不再使用“控制论”一词。 控制论与对系统的研究有关,如自动化系统、物理系统、生物系统、认知系统、以及社会系统等等。

强化学习技术

强化学习是一种试错方法,其目标是让软件智能体在特定环境中能够采取回报最大化的行为。强化学习在马尔可夫决策过程环境中主要使用的技术是动态规划(Dynamic Programming)。流行的强化学习方法包括自适应动态规划(ADP)、时间差分(TD)学习、状态-动作-回报-状态-动作(SARSA)算法、Q 学习、深度强化学习(DQN);其应用包括下棋类游戏、机器人控制和工作调度等。

深度神经网络技术

深度神经网络(DNN)是深度学习的一种框架,它是一种具备至少一个隐层的神经网络。与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。

推荐文章
暂无评论
暂无评论~