图灵奖得主Raj Reddy:以历史的视角重新审视“人工智能

编者按:5月31日上午,卡内基梅隆大学计算机学院教授、图灵奖获得者Raj Reddy莅临微软亚洲研究院,为我们带来了一场题为“重新审视人工智能:以历史的视角”的精彩讲座。Reddy教授从历史的视角出发,带领我们回溯了60年来计算机科学和人工智能领域的成就,回应了大众对“人工智能威胁论”的疑虑,并对未来的“超智能”作出了展望。本文是演讲的文字精简版。

60多年前,我们的行业先驱开创了计算机科学、人工智能这些全新的研究领域。但是直到今天,人们对人工智能依然抱有大量的误解和恐惧,认为人工智能将取代人类、统治世界。面对这些质疑,我认为,只有理解我们从何而来、身处何处,我们未来将去往何方,才不会对这些关于人工智能的误解感到困惑。

人工智能将永远无法统治世界,相反,由于人工智能可以成为每一个人的“超能力”,人类是平等的,没有谁将因为使用人工智能而凌驾于他人之上。如果我们向前回溯科技发展的历程,我们会发现,人工智能的发展与以往任何一次的技术进步都是相似的,不同的是我们比过去多了几百万倍的数据库,这些数据库正是我们今天所获得的一切成就的基础——无论是机器文本翻译、语音翻译,还是机器问答,这些创造性突破都离不开数据和计算能力的强有力支撑。

卡内基梅隆大学计算机学院教授、图灵奖获得者Raj Reddy

60年前,当我的导师John McCathy在1956年的达特茅斯会议上首次提出“人工智能”这一概念时,当时的初心是想让电脑像人一样智能地帮助人们完成一些繁琐的任务,人们就有更多的时间从事自己喜欢的事业。事实上,60年前机器就能帮助人们完成一些任务了,比如加减乘除的运算。于是人们继续发问,机器还能帮助我们完成其它任务吗?科学家们就开始了尝试,图灵说他相信机器可以拥有某些智能,Arthur Samuel开始研究如何让计算机学习下棋。所以机器学习在50年代就出现了,那时的机器学习是简单的规则学习,探索机器是否能发现、辨认和使用模式(pattern)。所以在人工智能的最初阶段,人们探讨的都是下棋、玩游戏、理论验证这样的问题接下来人们开始探索计算机能不能拥有解决问题的能力,他们编写程序让计算机尝试处理一些数学问题。由于这些问题只需要穷尽所有的可能性就可以解决,所以计算机解决得比人类更好更快。

在达特茅斯会议之后的第一个十年里,当时我还是斯坦福大学的一名学生。那时,人们认为电脑能够看、听、说并不是智能的表现,因为每一个普通人都可以做到这一点。但事实证明这种想法是错误的,从第二个十年开始,我们就开始研究制造机器人,让计算机能够说话,也开始了计算机视觉等新领域的研究,我们一路走来,历经困难,也有了许多新的突破。

某些人认为只有通用人工智能才能解决某些常识性问题,事实上,根本就不存在通用人工智能,所有的智能都是应用于某一特殊领域的智能。马文·明斯基在《心智社会》(The Society of Mind)中提到,人脑的智能不是整个大脑一起运作的,而是分为成千上万个区域,每一片区域具有一种特定功能。大脑的研究人员发现大脑有大约1立方厘米的区域专门用来识别妈妈的脸。当然,大脑会把负责图像识别的区域和负责语言的区域连接起来,这样一来我们就会把妈妈本身和“Mother”这个单词联系起来,所以连接就成为智能最重要的一部分。

我们希望计算机可以实现那些人类可以做的事情,比如说话、学习等等。然后,大家开始研究专家系统机器人自动驾驶汽车等等。到了20世纪末,我们用AI技术实现了几个对人类来说非常容易或者稍微有些困难的工作,比如,证明理论、下象棋等。随后,我们遇到了技术转折点,我们拥有了足够的计算能力、储存和带宽来实现那些我们过去认为永远无法实现的能力。

AI已经可以完成某些被认为是人类才能完成的任务。未来,AI能不能完成人类没办法做的事情?这不仅仅是通用人工智能,而是超智能。我认为未来这一点是可以实现的。回到AI和计算机科学的定义,我在1965年有过一个定义——AI和计算机科学是提高大脑能力的学科。你的大脑可以做的任何事情,计算机和AI都可以做地更好更快,甚至可以完成一些人类没办法完成的事情。

20世纪,计算机科学家们所做的就是对已有知识进行编程,采用各种各样的方式来让机器学习自己解决人类的任务。从比较简单的解数学题、下棋,到理解语言、语音、图像,再到机器人可以画画、创作音乐、完成股票自动交易这些更有创造力的任务。

与20世纪相比,21世纪的人工智能有两点不同:

第一,我们经历了一个范式转换,在21世纪,计算机科学的重大突破将由大数据来驱动——微软技术院士、图灵奖得主Jim Gray将大数据命名为继实验科学、理论推演、计算机仿真三大范式之后的“第四范式”。因此下一代人工智能系统就是数据驱动的人工智能系统

第二,20世纪人们在训练人工智能时使用的知识大多来自书籍,而到了21世纪,我们需要运用人工智能和大数据去发现各个行业里的新知识。庞大的数据量将超过人类的处理能力,人工智能、机器学习就成为了大数据时代的核心,也许有一天,计算机将学会自己编写它们需要的程序。

我想举一个大家熟悉的例子。中国目前的基础教育还存在地区、性别不平等的现象,比如西部地区的孩子可能很难通过高考挤进高校教育的金字塔尖,在某些领域女性的数量远远不及男性等等,美国加州的教育也存在类似的不平等,那些来自普通学校的学生将无法和顶尖学校的学生一样展现自己良好的学术水平。我们可以基于大数据做一张地图来呈现和分析这个话题,使它成为政府决策的有效依据。所以在21世纪,我们要尽可能地发现、使用数据驱动的知识资源去解决我们社会中的问题

那我们怎么运用人工智能去自动发现新知识呢?我们今天的机器学习深度学习都在使用大数据,但当下深度学习面临的一个问题是我们无法解释正确答案是如何被找到的。这个问题可能在未来的5-10年内会得到解决,也是我们接下来的任务。

最后我想重温一下人工智能领域已经取得的成就。1963-1969年间,我在斯坦福人工智能实验室,当时实验室已经开始着手机器人、语言、知识工程、计算机视觉等方向的研究。60年代,我们发明了“所见即所得”的图形编辑器、PIECESOF GLASS(POG)、计算理论等。70年代,出现了知识中心型人工智能,还有一场关于太空探索的热潮,我们在思考如何将人工智能应用于太空探索,这个问题我们至今仍未解决。80年代,我们在卡内基梅隆大学建立了机器人实验室,研究如何让机器人自动处理自己的系统。90年代,机器人成为了世界象棋冠军,已经学会了阅读理解、回答问题,等等。


一直以来我感兴趣的一个问题是,人工智能技术是否能够被没有受过教育的人所使用,他们如何使用?我们现有的技术可以做语言翻译、发音,这个过程中包含语音识别、转录、翻译等技术。多语言之间的翻译已经可以用技术部分实现,但还没有完全实现,因为世界上还有一百多种语言的元数据没有收集,而收集数据需要大量的时间和金钱。

回到我们的主题,20世纪的人工智能领域已经完成了很多重大突破,也留下了一系列棘手的问题,诸如通用语言翻译、自然语音识别等,我曾经认为它们在我有生之年都不会实现。但在21世纪的第一个十年,这些问题很快就有了突破,我们有了通用语言翻译、语音对话、自动驾驶汽车、深度问答系统、扑克机器人冠军等等。

为什么我们能够实现这些突破呢?因为它们都是在大数据和机器学习的帮助下成长起来的,计算机已经开始有能力做一些人类无法实现的事情。在今年11月份的“二十一世纪的计算”大会上,我将会为大家介绍认知放大器(cognition amplifier)和守护天使(guardian angel)的内容,同样是关于计算机完成一些人类无法完成的任务。举一个简单的例子,假设地震引发了一场海啸,如果我们对此毫不知情,这将成为一场伤亡惨重的大灾难,但如果我们有一个守护天使,能够预测10分钟后即将到来的巨大海浪,我们就能够拯救很多生命。如果马航的MH370航班上有一个守护天使,检测到机长没有按照原定航线行驶,他就会接管飞机的控制权,就近降落,那么所有人都会被拯救。

所以这就是未来,我们创造技术的目的是保障人类的能力,拓展人类的局限。我们每个人都将可以使用大规模的人工智能系统,它们就像我们的守护天使,可以保护人类、帮助人类、延伸人类的知觉与能力。放眼看更遥远的未来,我认为我们将不仅仅只有人工智能和人类智能,更会出现超人类智能。但别忘了最重要的一点,由于它们是高度专业化的智能机器,所以它们永远都不会统治世界,更不会奴役我们。谢谢大家!

Raj Reddy简介

Raj Reddy,卡内基梅隆大学计算机科学学院教授,1994年图灵奖获得者,美国国家工程院、美国艺术与科学院院士,1999年至2001年曾担任克林顿总统信息技术咨询委员会(PITAC)联合主席。Reddy博士在人工智能、语音理解、图像识别、机器人、多传感器应用、智能代理等领域有超过50年的研究经验。

入门AI机器学习Raj Reddy
1
相关数据
计算机视觉技术
Computer Vision

计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。目标识别和面部识别也是很重要的研究领域。

专家系统技术
Expert system

专家系统(ES)是人工智能最活跃和最广泛的领域之一。专家系统定义为:使用人类专家推理的计算机模型来处理现实世界中需要专家作出解释的复杂问题,并得出与专家相同的结论。简言之,如图1所示,专家系统可视作“知识库(knowledge base)”和“推理机(inference machine)” 的结合。

智能代理技术
Intelligent agent

智能代理,或译为智能主体。在人工智能领域,智能代理是指一个可以观察周遭环境并作出行动以达致目标的自主实体。它通常是指一个软件程序。“智能代理”是目前人工智能研究的一个核心概念,统御和联系着各个子领域的研究。

机器学习技术
Machine Learning

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

问答系统技术
Question Answering

问答系统是未来自然语言处理的明日之星。问答系统外部的行为上来看,其与目前主流资讯检索技术有两点不同:首先是查询方式为完整而口语化的问句,再来则是其回传的为高精准度网页结果或明确的答案字串。以Ask Jeeves为例,使用者不需要思考该使用什么样的问法才能够得到理想的答案,只需要用口语化的方式直接提问如“请问谁是美国总统?”即可。而系统在了解使用者问句后,会非常清楚地回答“奥巴马是美国总统”。面对这种系统,使用者不需要费心去一一检视搜索引擎回传的网页,对于资讯检索的效率与资讯的普及都有很大帮助。从系统内部来看,问答系统使用了大量有别于传统资讯检索系统自然语言处理技术,如自然语言剖析(Natural Language Parsing)、问题分类(Question Classification)、专名辨识(Named Entity Recognition)等等。少数系统甚至会使用复杂的逻辑推理机制,来区隔出需要推理机制才能够区隔出来的答案。在系统所使用的资料上,除了传统资讯检索会使用到的资料外(如字典),问答系统还会使用本体论等语义资料,或者利用网页来增加资料的丰富性。

自动驾驶技术
self-driving

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

机器人技术
Robotics

机器人学(Robotics)研究的是「机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理」 [25] 。 机器人可以分成两大类:固定机器人和移动机器人。固定机器人通常被用于工业生产(比如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。之前章节中提及的技术都可以在机器人上得到应用和集成,这也是人工智能领域最早的终极目标之一。

通用人工智能技术
Artificial General Intelligence

强人工智能或通用人工智能(Strong AI或者 Artificial General Intelligence)是具备与人类同等智慧、或超越人类的人工智能,能表现正常人类所具有的所有智能行为。强人工智能是人工智能研究的主要目标之一,同时也是科幻小说和未来学家所讨论的主要议题。相对的,弱人工智能(applied AI,narrow AI,weak AI)只处理特定的问题。弱人工智能不需要具有人类完整的认知能力,甚至是完全不具有人类所拥有的感官认知能力,只要设计得看起来像有智慧就可以了。由于过去的智能程式多是弱人工智能,发现这个具有领域的局限性,人们一度觉得强人工智能是不可能的。而强人工智能也指通用人工智能(artificial general intelligence,AGI),或具备执行一般智慧行为的能力。[4]强人工智能通常把人工智能和意识、感性、知识和自觉等人类的特征互相连结。

语音识别技术
Speech Recognition

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

深度学习技术
Deep learning

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法。观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。而使用某些特定的表示方法更容易从实例中学习任务(例如,人脸识别或面部表情识别)。 近年来监督式深度学习方法(以反馈算法训练CNN、LSTM等)获得了空前的成功,而基于半监督或非监督式的方法(如DBM、DBN、stacked autoencoder)虽然在深度学习兴起阶段起到了重要的启蒙作用,但仍处在研究阶段并已获得不错的进展。在未来,非监督式学习将是深度学习的重要研究方向,因为人和动物的学习大多是非监督式的,我们通过观察来发现世界的构造,而不是被提前告知所有物体的名字。 至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

微软研究院AI头条
微软研究院AI头条

微软亚洲研究院是微软公司在亚太地区设立的研究机构,也是微软在美国本土以外规模最大的一个。从1998年建院至今, 通过从世界各地吸纳而来的专家学者们的鼎力合作,微软亚洲研究院已经发展成为世界一流的计算机基础及应用研究机构,致力于推动整个计算机科学领域的前沿技术发展,并将最新研究成果快速转化到微软全球及中国本地的关键产品中,帮助消费者改善计算体验。同时,微软亚洲研究院着眼于下一代革命性技术的研究,助力公司实现长远发展战略和对未来计算的美好构想。

微软研究院AI头条
微软研究院AI头条

专注科研19年,盛产黑科技

推荐文章
中国《人工智能标准化白皮书2018》发布完整版(附下载)中国《人工智能标准化白皮书2018》发布完整版(附下载)
转载转载
2
机器中的大脑:隐居程序员正在建造虚拟农场机器中的大脑:隐居程序员正在建造虚拟农场
机器之心机器之心
第四范式首席科学家杨强:AlphaGo的弱点及迁移学习的应对(附视频)第四范式首席科学家杨强:AlphaGo的弱点及迁移学习的应对(附视频)
机器之心机器之心
返回顶部