目标函数的经典优化算法介绍

本文使用通俗的语言和形象的图示,介绍了随机梯度下降算法和它的三种经典变体,并提供了完整的实现代码。

GitHub 链接:https://github.com/ManuelGonzalezRivero/3dbabove

代价函数的多种优化方法

目标函数是衡量预测值和实际值的相似程度的指标。通常,我们希望得到使代价尽可能小的参数集,而这意味着你的算法性能不错。函数的最小可能代价被称为最小值。有时一个代价函数可以有多个局部极小值。幸运的是,在参数空间的维数非常高的情况下,阻碍目标函数充分优化的局部最小值并不经常出现,因为这意味着对象函数相对于每个参数在训练过程的早期都是凹的。但这并非常态,通常我们得到的是许多鞍点,而不是真正的最小值。

找到生成最小值的一组参数的算法被称为优化算法。我们发现随着算法复杂度的增加,则算法倾向于更高效地逼近最小值。我们将在这篇文章中讨论以下算法:

  • 随机梯度下降法
  • 动量算法
  • RMSProp
  • Adam 算法

随机梯度下降法

我的「Logistic 回归深入浅出」的文章里介绍了一个随机梯度下降如何运作的例子。如果你查阅随机梯度下降法的资料(SGD),通常会遇到如下的等式:

资料上会说,θ是你试图找到最小化 J 的参数,这里的 J 称为目标函数。最后,我们将学习率记为α。通常要反复应用上述等式,直到达到你所需的代价值。

这是什么意思?想一想,假如你坐在一座山顶上的雪橇上,望着另一座山丘。如果你滑下山丘,你会自然地往下移动,直到你最终停在山脚。如果第一座小山足够陡峭,你可能会开始滑上另一座山的一侧。从这个比喻中你可以想到:

学习率越高意味着摩擦力越小,因此雪橇会像在冰上一样沿着山坡下滑。低的学习率意味着摩擦力高,所以雪橇会像在地毯上一样,难以滑下。我们如何用上面的方程来模拟这种效果?

随机梯度下降法:

  1. 初始化参数(θ,学习率)
  2. 计算每个θ处的梯度
  3. 更新参数
  4. 重复步骤 2 和 3,直到代价值稳定

让我们用一个简单的例子来看看它是如何运作的!

在这里我们看到一个目标函数和它的导数(梯度):

我们可以用下面的代码生成函数和梯度值/30 的图:

  1. import numpy as np

  2. def minimaFunction(theta):

  3.    return np.cos(3*np.pi*theta)/theta

  4. def minimaFunctionDerivative(theta):

  5.    const1 = 3*np.pi

  6.    const2 = const1*theta

  7.    return -(const1*np.sin(const2)/theta)-np.cos(const2)/theta**2

  8. theta = np.arange(.1,2.1,.01)

  9. Jtheta = minimaFunction(theta)

  10. dJtheta = minimaFunctionDerivative(theta)

  11. plt.plot(theta,Jtheta,label = r'$J(\theta)$')

  12. plt.plot(theta,dJtheta/30,label = r'$dJ(\theta)/30$')

  13. plt.legend()

  14. axes = plt.gca()

  15. #axes.set_ylim([-10,10])

  16. plt.ylabel(r'$J(\theta),dJ(\theta)/30$')

  17. plt.xlabel(r'$\theta$')

  18. plt.title(r'$J(\theta),dJ(\theta)/30 $ vs $\theta$')

  19. plt.show()

上图中有两个细节值得注意。首先,注意这个代价函数有几个极小值(大约在 0.25、1.0 和 1.7 附近取得)。其次,注意在最小值处的导数在零附近的曲线走向。这个点就是我们所需要的新参。

我们可以在下面的代码中看到上面四个步骤的实现。它还会生成一个视频,显示每个步骤的θ和梯度的值。

  1. import numpy as np

  2. import matplotlib.pyplot as plt

  3. import matplotlib.animation as animation

  4. def optimize(iterations, oF, dOF,params,learningRate):

  5.    """

  6.    computes the optimal value of params for a given objective function and its derivative

  7.    Arguments:

  8.        - iteratoins - the number of iterations required to optimize the objective function

  9.        - oF - the objective function

  10.        - dOF - the derivative function of the objective function

  11.        - params - the parameters of the function to optimize

  12.        - learningRate - the learning rate

  13.    Return:

  14.        - oParams - the list of optimized parameters at each step of iteration

  15.    """

  16.    oParams = [params]

  17.    #The iteration loop

  18.    for i in range(iterations):

  19.        # Compute the derivative of the parameters

  20.        dParams = dOF(params)

  21.        # Compute the update

  22.        params = params-learningRate*dParams

  23.        # app end the new parameters

  24.        oParams.append(params)    

  25.    return np.array(oParams)

  26. def minimaFunction(theta):

  27.    return np.cos(3*np.pi*theta)/theta

  28. def minimaFunctionDerivative(theta):

  29.    const1 = 3*np.pi

  30.    const2 = const1*theta

  31.    return -(const1*np.sin(const2)/theta)-np.cos(const2)/theta**2

  32. theta = .6

  33. iterations=45

  34. learningRate = .0007

  35. optimizedParameters = optimize(iterations,\

  36.                               minimaFunction,\

  37.                               minimaFunctionDerivative,\

  38.                               theta,\

  39.                               learningRate)

这似乎运作得很好!您应该注意到,如果θ的初始值较大,则优化算法将在某一个局部极小处结束。然而,如上所述,在极高维度空间中这种可能性并不大,因为它要求所有参数同时满足凹函数。

你可能会想,「如果我们的学习率太大,会发生什么?」。如果步长过大,则算法可能永远不会找到如下的动画所示的最佳值。监控代价函数并确保它单调递减,这一点很重要。如果没有单调递减,可能需要降低学习率。

SGD 也适用于多变量参数空间的情况。我们可以将二维函数绘制成等高线图。在这里你可以看到 SGD 对一个不对称的碗形函数同样有效。

  1. import numpy as np

  2. import matplotlib.mlab as mlab

  3. import matplotlib.pyplot as plt

  4. import scipy.stats

  5. import matplotlib.animation as animation

  6. def minimaFunction(params):

  7.    #Bivariate Normal function

  8.    X,Y = params

  9.    sigma11,sigma12,mu11,mu12 = (3.0,.5,0.0,0.0)

  10.    Z1 = mlab.bivariate_normal(X, Y, sigma11,sigma12,mu11,mu12)

  11.    Z = Z1

  12.    return -40*Z

  13. def minimaFunctionDerivative(params):

  14.    # Derivative of the bivariate normal function

  15.    X,Y = params

  16.    sigma11,sigma12,mu11,mu12 = (3.0,.5,0.0,0.0)

  17.    dZ1X = -scipy.stats.norm.pdf(X, mu11, sigma11)*(mu11 - X)/sigma11**2

  18.    dZ1Y = -scipy.stats.norm.pdf(Y, mu12, sigma12)*(mu12 - Y)/sigma12**2

  19.    return (dZ1X,dZ1Y)

  20. def optimize(iterations, oF, dOF,params,learningRate,beta):

  21.    """

  22.    computes the optimal value of params for a given objective function and its derivative

  23.    Arguments:

  24.        - iteratoins - the number of iterations required to optimize the objective function

  25.        - oF - the objective function

  26.        - dOF - the derivative function of the objective function

  27.        - params - the parameters of the function to optimize

  28.        - learningRate - the learning rate

  29. - beta - The weighted moving average parameter

  30.    Return:

  31.        - oParams - the list of optimized parameters at each step of iteration

  32.    """

  33.    oParams = [params]

  34.    vdw     = (0.0,0.0)

  35.    #The iteration loop

  36.    for i in range(iterations):

  37.        # Compute the derivative of the parameters

  38.        dParams = dOF(params)

  39.        #SGD in this line Goes through each parameter and applies parameter = parameter -learningrate*dParameter

  40.        params = tuple([par-learningRate*dPar for dPar,par in zip(dParams,params)])

  41.        # append the new parameters

  42.        oParams.append(params)    

  43.    return oParams

  44. iterations=100

  45. learningRate = 1

  46. beta = .9

  47. x,y = 4.0,1.0

  48. params = (x,y)

  49. optimizedParameters = optimize(iterations,\

  50.                               minimaFunction,\

  51.                               minimaFunctionDerivative,\

  52.                               params,\

  53.                               learningRate,\

  54.                               beta)



动量 SGD


注意,传统 SGD 没有解决所有问题!通常,用户想要使用非常大的学习速率来快速学习感兴趣的参数。不幸的是,当代价函数波动较大时,这可能导致不稳定。你可以看到,在前面的视频中,由于缺乏水平方向上的最小值,y 参数方向的抖动形式。动量算法试图使用过去的梯度预测学习率来解决这个问题。通常,使用动量的 SGD 通过以下公式更新参数:

γ 和 ν 值允许用户对 dJ(θ) 的前一个值和当前值进行加权来确定新的θ值。人们通常选择γ和ν的值来创建指数加权移动平均值,如下所示:


β参数的最佳选择是 0.9。选择一个等于 1-1/t 的β值可以让用户更愿意考虑νdw 的最新 t 值。这种简单的改变可以使优化过程产生显著的结果!我们现在可以使用更大的学习率,并在尽可能短的时间内收敛!

  1. import numpy as np

  2. import matplotlib.mlab as mlab

  3. import matplotlib.pyplot as plt

  4. import scipy.stats

  5. import matplotlib.animation as animation

  6. def minimaFunction(params):

  7.    #Bivariate Normal function

  8.    X,Y = params

  9.    sigma11,sigma12,mu11,mu12 = (3.0,.5,0.0,0.0)

  10.    Z1 = mlab.bivariate_normal(X, Y, sigma11,sigma12,mu11,mu12)

  11.    Z = Z1

  12.    return -40*Z

  13. def minimaFunctionDerivative(params):

  14.    # Derivative of the bivariate normal function

  15.    X,Y = params

  16.    sigma11,sigma12,mu11,mu12 = (3.0,.5,0.0,0.0)

  17.    dZ1X = -scipy.stats.norm.pdf(X, mu11, sigma11)*(mu11 - X)/sigma11**2

  18.    dZ1Y = -scipy.stats.norm.pdf(Y, mu12, sigma12)*(mu12 - Y)/sigma12**2

  19.    return (dZ1X,dZ1Y)

  20. def optimize(iterations, oF, dOF,params,learningRate,beta):

  21.    """

  22.    computes the optimal value of params for a given objective function and its derivative

  23.    Arguments:

  24.        - iteratoins - the number of iterations required to optimize the objective function

  25.        - oF - the objective function

  26.        - dOF - the derivative function of the objective function

  27.        - params - the parameters of the function to optimize

  28.        - learningRate - the learning rate

  29. - beta - The weighted moving average parameter for momentum

  30.    Return:

  31.        - oParams - the list of optimized parameters at each step of iteration

  32.    """

  33.    oParams = [params]

  34.    vdw     = (0.0,0.0)

  35.    #The iteration loop

  36.    for i in range(iterations):

  37.        # Compute the derivative of the parameters

  38.        dParams = dOF(params)

  39.        # Compute the momentum of each gradient vdw = vdw*beta+(1.0+beta)*dPar

  40.        vdw = tuple([vDW*beta+(1.0-beta)*dPar for dPar,vDW in zip(dParams,vdw)])

  41.        #SGD in this line Goes through each parameter and applies parameter = parameter -learningrate*dParameter

  42.        params = tuple([par-learningRate*dPar for dPar,par in zip(vdw,params)])

  43.        # append the new parameters

  44.        oParams.append(params)    

  45.    return oParams

  46. iterations=100

  47. learningRate = 5.3

  48. beta = .9

  49. x,y = 4.0,1.0

  50. params = (x,y)

  51. optimizedParameters = optimize(iterations,\

  52.                               minimaFunction,\

  53.                               minimaFunctionDerivative,\

  54.                               params,\

  55.                               learningRate,\

  56.                               beta)



RMSProp


像工程中的其它事物一样,我们一直在努力做得更好。RMS prop 试图通过观察关于每个参数的函数梯度的相对大小,来改善动量函数。因此,我们可以取每个梯度平方的加权指数移动平均值,并按比例归一化梯度下降函数。具有较大梯度的参数的 sdw 值将变得比具有较小梯度的参数大得多,从而使代价函数平滑下降到最小值。可以在下面的等式中看到:


请注意,这里的 epsilon 是为数值稳定性而添加的,可以取 10e-7。这是为什么昵?

  1. import numpy as np

  2. import matplotlib.mlab as mlab

  3. import matplotlib.pyplot as plt

  4. import scipy.stats

  5. import matplotlib.animation as animation

  6. def minimaFunction(params):

  7.    #Bivariate Normal function

  8.    X,Y = params

  9.    sigma11,sigma12,mu11,mu12 = (3.0,.5,0.0,0.0)

  10.    Z1 = mlab.bivariate_normal(X, Y, sigma11,sigma12,mu11,mu12)

  11.    Z = Z1

  12.    return -40*Z

  13. def minimaFunctionDerivative(params):

  14.    # Derivative of the bivariate normal function

  15.    X,Y = params

  16.    sigma11,sigma12,mu11,mu12 = (3.0,.5,0.0,0.0)

  17.    dZ1X = -scipy.stats.norm.pdf(X, mu11, sigma11)*(mu11 - X)/sigma11**2

  18.    dZ1Y = -scipy.stats.norm.pdf(Y, mu12, sigma12)*(mu12 - Y)/sigma12**2

  19.    return (dZ1X,dZ1Y)

  20. def optimize(iterations, oF, dOF,params,learningRate,beta):

  21.    """

  22.    computes the optimal value of params for a given objective function and its derivative

  23.    Arguments:

  24.        - iteratoins - the number of iterations required to optimize the objective function

  25.        - oF - the objective function

  26.        - dOF - the derivative function of the objective function

  27.        - params - the parameters of the function to optimize

  28.        - learningRate - the learning rate

  29. - beta - The weighted moving average parameter for RMSProp

  30.    Return:

  31.        - oParams - the list of optimized parameters at each step of iteration

  32.    """

  33.    oParams = [params]

  34.    sdw     = (0.0,0.0)

  35.    eps = 10**(-7)

  36.    #The iteration loop

  37.    for i in range(iterations):

  38.        # Compute the derivative of the parameters

  39.        dParams = dOF(params)

  40.        # Compute the momentum of each gradient sdw = sdw*beta+(1.0+beta)*dPar^2

  41.        sdw = tuple([sDW*beta+(1.0-beta)*dPar**2 for dPar,sDW in zip(dParams,sdw)])

  42.        #SGD in this line Goes through each parameter and applies parameter = parameter -learningrate*dParameter

  43.        params = tuple([par-learningRate*dPar/((sDW**.5)+eps) for sDW,par,dPar in zip(sdw,params,dParams)])

  44.        # append the new parameters

  45.        oParams.append(params)    

  46.    return oParams

  47. iterations=10

  48. learningRate = .3

  49. beta = .9

  50. x,y = 5.0,1.0

  51. params = (x,y)

  52. optimizedParameters = optimize(iterations,\

  53.                               minimaFunction,\

  54.                               minimaFunctionDerivative,\

  55.                               params,\

  56.                               learningRate,\

  57.                               beta)

Adam 算法

Adam 算法将动量和 RMSProp 的概念结合成一种算法,以获得两全其美的效果。公式如下:


  1. import numpy as np

  2. import matplotlib.mlab as mlab

  3. import matplotlib.pyplot as plt

  4. import scipy.stats

  5. import matplotlib.animation as animation

  6. def minimaFunction(params):

  7.    #Bivariate Normal function

  8.    X,Y = params

  9.    sigma11,sigma12,mu11,mu12 = (3.0,.5,0.0,0.0)

  10.    Z1 = mlab.bivariate_normal(X, Y, sigma11,sigma12,mu11,mu12)

  11.    Z = Z1

  12.    return -40*Z

  13. def minimaFunctionDerivative(params):

  14.    # Derivative of the bivariate normal function

  15.    X,Y = params

  16.    sigma11,sigma12,mu11,mu12 = (3.0,.5,0.0,0.0)

  17.    dZ1X = -scipy.stats.norm.pdf(X, mu11, sigma11)*(mu11 - X)/sigma11**2

  18.    dZ1Y = -scipy.stats.norm.pdf(Y, mu12, sigma12)*(mu12 - Y)/sigma12**2

  19.    return (dZ1X,dZ1Y)

  20. def optimize(iterations, oF, dOF,params,learningRate,beta1,beta2):

  21.    """

  22.    computes the optimal value of params for a given objective function and its derivative

  23.    Arguments:

  24.        - iteratoins - the number of iterations required to optimize the objective function

  25.        - oF - the objective function

  26.        - dOF - the derivative function of the objective function

  27.        - params - the parameters of the function to optimize

  28.        - learningRate - the learning rate

  29. - beta1 - The weighted moving average parameter for momentum component of ADAM

  30. - beta2 - The weighted moving average parameter for RMSProp component of ADAM

  31.    Return:

  32.        - oParams - the list of optimized parameters at each step of iteration

  33.    """

  34.    oParams = [params]

  35.    vdw     = (0.0,0.0)

  36.    sdw     = (0.0,0.0)

  37.    vdwCorr = (0.0,0.0)

  38.    sdwCorr = (0.0,0.0)

  39.    eps = 10**(-7)

  40.    #The iteration loop

  41.    for i in range(iterations):

  42.        # Compute the derivative of the parameters

  43.        dParams = dOF(params)

  44.        # Compute the momentum of each gradient vdw = vdw*beta+(1.0+beta)*dPar

  45.        vdw     = tuple([vDW*beta1+(1.0-beta1)*dPar for dPar,vDW in zip(dParams,vdw)])

  46.        # Compute the rms of each gradient sdw = sdw*beta+(1.0+beta)*dPar^2

  47.        sdw     = tuple([sDW*beta2+(1.0-beta2)*dPar**2.0 for dPar,sDW in zip(dParams,sdw)])

  48.        # Compute the weight boosting for sdw and vdw

  49.        vdwCorr = tuple([vDW/(1.0-beta1**(i+1.0)) for vDW in vdw])

  50.        sdwCorr = tuple([sDW/(1.0-beta2**(i+1.0)) for sDW in sdw])

  51.        #SGD in this line Goes through each parameter and applies parameter = parameter -learningrate*dParameter

  52.        params = tuple([par-learningRate*vdwCORR/((sdwCORR**.5)+eps) for sdwCORR,vdwCORR,par in zip(vdwCorr,sdwCorr,params)])

  53.        # append the new parameters

  54.        oParams.append(params)    

  55.    return oParams

  56. iterations=100

  57. learningRate = .1

  58. beta1 = .9

  59. beta2 = .999

  60. x,y = 5.0,1.0

  61. params = (x,y)

  62. optimizedParameters = optimize(iterations,\

  63.                               minimaFunction,\

  64.                               minimaFunctionDerivative,\

  65.                               params,\

  66.                               learningRate,\

  67.                               beta1,\

  68.                               beta2)</div>

Adam 算法可能是目前深度学习中使用最广泛的优化算法,适用于多种应用。Adam 计算了一个 νdw^corr 的值,用于加快指数加权移动平均值的变化。它将通过增加它们的值来对它们进行标准化,与当前的迭代次数成反比。使用 Adam 时有一些很好的初始值可供尝试。它最好以 0.9 的 β_1 和 0.999 的 β_2 开头。

总结

优化目标函数的算法有相当多的选择。在上述示例中,我们发现各种方法的收敛速度越来越快:

– SGD: 100 次迭代

– SGD+Momentum: 50 次迭代

– RMSProp: 10 次迭代

– ADAM: 5 次迭代

原文链接:https://3dbabove.com/2017/11/14/optimizationalgorithms/

工程梯度下降优化算法工程损失函数实现
5