《神经网络和深度学习》系列文章四十九:神经网络的未来


出处: Michael Nielsen的《Neural Network and Deep Learning》,本节译者:朱小虎 、张广宇。


目录

1、使用神经网络识别手写数字

2、反向传播算法是如何工作的

3、改进神经网络的学习方法

4、神经网络可以计算任何函数的可视化证明

5、为什么深度神经网络的训练是困难的

6、深度学习

  • 介绍卷积网络
  • 卷积神经网络在实际中的应用
  • 卷积网络的代码
  • 图像识别领域中的近期进展
  • 其他的深度学习模型
  • 神经网络的未来

意图驱动的用户接口:有个很古老的笑话是这么说的:“一位不耐烦的教授对一个困惑的学生说道,‘不要光听我说了什么,要听懂我说的含义。’”。历史上,计算机通常是扮演了笑话中困惑的学生这样的角色,对用户表示的完全不知晓。而现在这个场景发生了变化。我仍然记得自己在 Google 搜索的打错了一个查询,搜索引擎告诉了我“你是否要的是[这个正确的查询]?”,然后给出了对应的搜索结果。Google 的 CEO Larry Page曾经描述了最优搜索引擎就是准确理解用户查询的含义,并给出对应的结果。

这就是意图驱动的用户接口的愿景。在这个场景中,不是直接对用户的查询词进行结果的反馈,搜索引擎使用机器学习技术对大量的用户输入数据进行分析,研究查询本身的含义,并通过这些发现来进行合理的动作以提供最优的搜索结果。

而意图驱动接口这样的概念也不仅仅用在搜索上。在接下来的数十年,数以千计的公司会将产品建立在机器学习来设计满足更高的准确率的用户接口上,准确地把握用户的意图。现在我们也看到了一些早期的例子:如苹果的Siri;Wolfram Alpha;IBM 的 Watson;可以对照片和视频进行注解的系统;还有更多的。

大多数这类产品会失败。启发式用户接口设计非常困难,我期望有更多的公司会使用强大的机器学习技术来构建无聊的用户接口。最优的机器学习并不会在你自己的用户接口设计很糟糕时发挥出作用。但是肯定也会有能够胜出的产品。随着时间推移,人类与计算机的关系也会发生重大的改变。不久以前,比如说,2005 年——用户从计算机那里得到的是准确度。因此,很大程度上计算机很古板的;一个小小的分号放错便会完全改变和计算机的交互含义。但是在以后数十年内,我们期待着创造出意图驱动的用户借款购,这也会显著地改变我们在与计算机交互的期望体验。

机器学习,数据科学和创新的循环:当然,机器学习不仅仅会被用来建立意图驱动的接口。另一个有趣的应用是数据科学中,机器学习可以找到藏在数据中的“确知的未知”。这已经是非常流行的领域了,也有很多的文章和书籍介绍了这一点,所以本文不会涉及太多。但我想谈谈比较少讨论的一点,这种流行的后果:长期看来,很可能机器学习中最大的突破并不会任何一种单一的概念突破。更可能的情况是,最大的突破是,机器学习研究会获得丰厚的成果,从应用到数据科学及其他领域。如果公司在机器学习研究中投入 1 美元,则有 1 美元加 10 美分的回报,那么机器学习研究会有很充足的资金保证。换言之,机器学习是驱动几个主要的新市场和技术成长的领域出现的引擎。结果就是出现拥有精通业务的的大团队,能够获取足够的资源。这样就能够将机器学习推向更新的高度,创造出更多市场和机会,一种高级创新的循坏。

神经网络和深度学习的角色:我已经探讨过机器学习会成为一个技术上的新机遇创建者。那么神经网络和深度学习作为一种技术又会有什么样独特的贡献呢?

为了更好地回答这个问题,我们来来看看历史。早在 1980 年代,人们对神经网络充满了兴奋和乐观,尤其是在 BP 被大家广泛知晓后。而在 1990 年代,这样的兴奋逐渐冷却,机器学习领域的注意力转移到了其他技术上,如 SVM。现在,神经网络卷土重来,刷新了几乎所有的记录,在很多问题上也都取得了胜利。但是谁又能说,明天不会有一种新的方法能够击败神经网络?或者可能神经网络研究的进程又会阻滞,等不来没有任何的进展?

所以,可能更好的方式是看看机器学习的未来而不是单单看神经网络。还有个原因是我们对神经网络的理解还是太少了。为何神经网络能够这么好地泛化?为何在给定大规模的学习的参数后,采取了一些方法后可以避免过匹配?为何神经网络中随机梯度下降很有效?在数据集扩展后,神经网络又能达到什么样的性能?如,如果 ImageNet 扩大 10 倍,神经网络的性能会比其他的机器学习技术好多少?这些都是简单,根本的问题。当前,我们都对它们理解的很少。所以,要说神经网络在机器学习的未来要扮演什么样的角色,很难回答。

我会给出一个预测:我相信,深度学习会继续发展。学习概念的层次特性、构建多层抽象的能力,看起来能够从根本上解释世界。这也并不是说未来的深度学习研究者的想法发生变化。我们看到了,在那些使用的神经单元、网络的架构或者学习算法上,都出现了重大转变。如果我们不再将最终的系统限制在神经网络上时,这些转变将会更加巨大。但人们还是在进行深度学习的研究。

神经网络和深度学习将会主导人工智能?本书集中在使用神经网络来解决具体的任务,如图像分类。现在更进一步,问:通用思维机器会怎么样?神经网络和深度学习能够帮助我们解决(通用)人工智能(AI)的问题么?如果可以,以目前深度学习领域的发展速度,我们能够期待通用 AI 在未来的发展么?认真探讨这个问题可能又需要另写一本书。不过,我们可以给点意见。其想法基于Conway’s law:

任何设计了一个系统的组织…… 最终会不可避免地产生一个设计,其结构本身是这个组织的交流结构

所以,打个比方,Conway 法则告诉我们波音 747 客机的设计会镜像在设计波音 747 那时的波音及其承包商的组织结构。或者,简单举例,假设一个公司开发一款复杂的软件应用。如果应用的 dashboard 会集成一些机器学习算法,设计 dashboard 的人员最好去找公司的机器学习专家讨论一下。Conway 法则就是这种观察的描述,可能更加宏大。

第一次听到 Conway 法则,很多人的反应是:“好吧,这不是很显然么?” 或者 “这是不是不对啊?”让我来对第二个观点进行分析。作为这个反对的例子,我们可以看看波音的例子:波音的审计部门会在哪里展示 747 的设计?他们的清洁部门会怎么样?内部的食品供应?结果就是组织的这些部门可能不会显式地出现在 747 所在的任何地方。所以我们应该理解 Conway法则就是仅仅指那些显式地设计和工程的组织部门。

而对另一个反对观点,就是 Conway 法则是很肤浅,显而易见的?对那些常常违背 Conway法则运行的组织来说,可能是这样子,但我认为并非如此。构建新产品的团队通常会被不合适的员工挤满或者缺乏具备关键能力的人员。想想那些包含无用却复杂特征的产品,或者那些有明显重大缺陷的产品——例如,糟糕的用户界面。这两种情况的问题通常都是因所需构建好产品的团队和实际上组成的团队之间的不匹配产生的。Conway 法则可能是显而易见的,但是并不是说就可以随随便便忽略这个法则。

Conway 法则应用在系统的设计和工程中,我们需要很好地理解可能的系统的组成结构,以及如何来构建这些部件。由于 AI 还不具备这样的特性:我们不知道组成部分究竟是哪些,所以 Conway 法则不能直接应用在 AI 的开发过程中。因此,我们甚至不能确定哪些是最为根本的问题。换言之,AI 更是一个科学问题而非工程问题。想像我们开始设计 747,并不了解喷气引擎和空气动力学的原理。也就难以确定自己团队需要哪种类型的专家。正如 Werner von Braun 指出的,“基础研究就是我们并不知道自己正在做的研究究竟是什么”。那么有没有 Conway 法则在更为科学而非工程的问题上的版本呢?

为了正好地回答这个问题,我们可以看看医学的历史。在人类早期,医学是像 Galen 和Hippocrates 这样的实践者的领域,他们研究整个人体。但是随着我们知识的增长,人类便被强迫进行专业分工了。我们发现很多深刻(deep)的新观点(深刻(deep)这里并没有给出关于这个概念的严格定义,粗略地指对于整个丰富研究领域来说基础性的概念和想法。反向算法和疾病的微生物理论就是关于深刻很好的例子。):如疾病的微生物理论,或者对抗体工作机制的理解,又或者心脏、肺、血管和动脉的理解,所有这些知识形成了完整的心血管疾病系统。这样深刻的理解形成了诸如流行病学、免疫学和围绕在心血管疾病系统交叉关联的领域的集群。所以我们的知识结构形成了医学的社会结构。这点在免疫学上显现的尤其明显:认识到免疫系统的存在和具备研究的价值是非凡的洞察。这样,我们就有了医学的完整领域——包含专家、会议、奖项等等——围绕在某种不可见的事物周围,可以说,这并非一个清晰的概念。

这种特点也在不同的科学分支上广泛存在:不仅仅是医学,在物理学、数学、化学等等领域都存在这样的情况。这些领域开始时显现出一整块的知识,只有一点点深刻的观点。早期的专家可以掌握所有的知识。但随着时间流逝,这种一整块的特性就发生的演变。我们发现很多深刻的新想法,对任何一个人来说都是太多以至于难以掌握所有的想法。所以,这个领域的社会结构就开始重新组织,围绕着这些想法分离。我们现在看到的就是领域被不断地细分,子领域按照一种复杂的、递归的、自指的社会结构进行分解,而这些组织关系也反映了最深刻的那些想法之间的联系。因此,知识结构形成了科学的社会组织关系。但这些社会关系反过来也会限制和帮助决定那些可以发现的事物。这就是 Conway 法则在科学上变体版本。

那么,这又会对深度学习或者 AI 有什么影响呢?

因为在 AI 发展早期,存在对它的争论,一方认为,“这并不是很难的一件事,我们已经有[超级武器]了。”,反对方认为,“超级武器并不足够”。深度学习就是最新的超级武器(有趣的是,这往往不是由深度学习的主要专家提出的,他们已经相当克制。例如,看看 Yann LeCun 写的严肃的帖子。这和很多早期的争论不同。)更早的有逻辑、Prolog或者专家系统,或者当时最牛的技术。这些论点的问题就是他们并没有以较好的方式告诉你这些给定的候选超级武器如何强大。当然,我们已经花了一章来回顾深度学习可以解决具备相当挑战性的问题的证据。看起来令人兴奋,前景光明。但是那些像 Prolog 或者 Eurisko 或者专家系统在它们的年代也同样如此。所以,那些观点或者方法看起来很有前景并没有什么用。我们如何区分出深度学习和早期的方法的本质差异呢?Conway 法则给出了一个粗略和启发性的度量,也就是评价和这些方法相关的社会关系的复杂性。

所以,这就带来了两个需要回答的问题。第一,根据这种社会复杂性度量,方法集和深度学习关联的强度是怎么样的?第二,我们需要多么强大的理论来构建一个通用的人工智能?

对第一个问题:我们现在看深度学习,这是一个激情澎湃却又相对单一的领域。有一些深刻的想法,一些主要的学术会议,其中若干会议之间也存在着很多重叠。然后,一篇篇的论文在不断地提升和完善同样的一些基本想法:使用 SGD(或者类似的变体)来优化一个代价函数。这些想法非常成功。但是我们现在还没有看到子领域的健康发展,每个人在研究自己的深刻想法,将深度学习推向很多的方向。所以,根据社会复杂性度量,忽略文字游戏,深度学习仍然是一个相当粗浅的领域。现在还是可以完全地掌握该领域大多数的深刻想法的。

第二个问题:一个想法集合需要如何复杂和强大才能达到 AI?当然,对这个问题的答案是:无人知晓。但在附录部分,我讨论了一些已有的观点。我比较乐观地认为,将会使用很多很多深刻的观点来构建 AI。所以,Conway 法则告诉我们,为了达到这样的目标,我们必需看到很多交叉关联的学科,以一种复杂和可能会很奇特的结构的出现,这种结构也映射出了那些最深刻洞察之间的关系。目前在使用神经网络和深度学习中,这样的社会结构还没有出现。并且,我也坚信离真正使用深度学习来发展通用 AI 还有至少几十年的距离。

催生这个可能看起来很易见的试探性的并不确定的论断已经带给我很多的困扰。毫无疑问,这将会让那些寄望于获得确定性的人们变得沮丧。读了很多网络上的观点,我发现很多人在大声地下结论,对 AI 持有非常乐观的态度,但很多是缺少确凿证据和站不住脚的推断的。我很坦白的观点是:现在下这样乐观的结论还为之过早。正如一个笑话所讲,如果你问一个科学家,某个发现还有多久才会出现,他们会说 10 年(或者更多),其实真正的含义就是“我不知道”。AI,像受控核聚变和其他技术一样,已经发展远超 10 年已经 60 多年了。另一方面,我们在深度学习中确确实实在做的其实就是还没有发现极限的强大技术,还有哪些相当开放的根本性问题。这是令人兴奋异常的创造新事物的机遇。

本文来源于哈工大SCIR

原文链接点击即可跳转

哈工大SCIR
哈工大SCIR

哈尔滨工业大学社会计算与信息检索研究中心

工程理论书籍神经网络哈工大深度学习
暂无评论
暂无评论~