《神经网络和深度学习》系列文章十六:反向传播算法代码

出处: Michael Nielsen的《Neural Network and Deep Learning》,本节译者:哈工大SCIR硕士生李盛秋。


目录

1、使用神经网络识别手写数字

2、反向传播算法是如何工作的

  • 热身:一个基于矩阵的快速计算神经网络输出的方法
  • 关于损失函数的两个假设
  • Hadamard积
  • 反向传播背后的四个基本等式
  • 四个基本等式的证明(选读)
  • 反向传播算法
  • 反向传播算法代码
  • 什么时候反向传播算法高效
  • 反向传播算法再理解

3、改进神经网络的学习方法

4、神经网络能够计算任意函数的视觉证明

5、为什么深度神经网络的训练是困难的

6、深度学习


在理论上理解了反向传播算法后,就可以理解上一章中用来实现反向传播算法的代码了。一下回忆章第一Network类中的update_mini_batch状语从句:backprop方法的代码。这些代码可以看做是上面算法描述的直接翻译。具体来说,update_mini_batch方法通过计算梯度来为当前的小批次(mini_batch)更新Network的权重状语从句:偏置。

class Network(object):
...
    def update_mini_batch(self, mini_batch, eta):
        """Update the network's weights and biases by applying
        gradient descent using backpropagation to a single mini batch.
        The "mini_batch" is a list of tuples "(x, y)", and "eta"
        is the learning rate."""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        for x, y in mini_batch:
            delta_nabla_b, delta_nabla_w = self.backprop(x, y)
            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
        self.weights = [w-(eta/len(mini_batch))*nw 
                        for w, nw in zip(self.weights, nabla_w)]
        self.biases = [b-(eta/len(mini_batch))*nb 
                       for b, nb in zip(self.biases, nabla_b)]

大部分工作是由delta_nabla_b, delta_nabla_w = self.backprop(x, y)这行代码完成的。它使用了backprop方法来计算偏导。backprop方法基本上是按照上一节中描述的内容来实现的,但有一点不同:我们使用了一个稍微不同的方法来索引层。这个改动利用了的Python中列表负索引特性的优势来从后向前索引一个列表。例如,l[-3]代表列表l的倒数第三项。backprop方法的代码如下所示,同时还有一些帮助方法用来计算函数,的导数,以及代价函数的导数。你应该能够理解下面的代码了。但如果遇到了困难的话,可以参考第一章中对这段代码的描述。

class Network(object):
...
   def backprop(self, x, y):
        """Return a tuple "(nabla_b, nabla_w)" representing the
        gradient for the cost function C_x.  "nabla_b" and
        "nabla_w" are layer-by-layer lists of numpy arrays, similar
        to "self.biases" and "self.weights"."""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # feedforward
        activation = x
        activations = [x] # list to store all the activations, layer by layer
        zs = [] # list to store all the z vectors, layer by layer
        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b
            zs.append(z)
            activation = sigmoid(z)
            activations.append(activation)
        # backward pass
        delta = self.cost_derivative(activations[-1], y) * \
            sigmoid_prime(zs[-1])
        nabla_b[-1] = delta
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())
        # Note that the variable l in the loop below is used a little
        # differently to the notation in Chapter 2 of the book.  Here,
        # l = 1 means the last layer of neurons, l = 2 is the
        # second-last layer, and so on.  It's a renumbering of the
        # scheme in the book, used here to take advantage of the fact
        # that Python can use negative indices in lists.
        for l in xrange(2, self.num_layers):
            z = zs[-l]
            sp = sigmoid_prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
            nabla_b[-l] = delta
            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
        return (nabla_b, nabla_w)

...

    def cost_derivative(self, output_activations, y):
        """Return the vector of partial derivatives \partial C_x /
        \partial a for the output activations."""
        return (output_activations-y) 

def sigmoid(z):
    """The sigmoid function."""
    return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
    """Derivative of the sigmoid function."""
    return sigmoid(z)*(1-sigmoid(z))


问题

  • 在一个批次(微型批次)上应用完全基于矩阵的反向传播方法

在我们的随机梯度下降算法的实现中,我们需要依次遍历一个批次(微型批次)中的训练样例。我们也可以修改反向传播算法,使得它可以同时为一个批次中的所有训练样例计算梯度。我们在输入时传入一个矩阵(而不是一个向量),这个矩阵的列代表了这一个批次中的向量。前向传播时,每一个节点都将输入乘以权重矩阵,偏置加上矩阵并应用sigmoid函数来得到输出,反向传播时也用类似的方式计算。明确地写出这种反向传播方法,并修改network.py,令其使用这种完全基于矩阵的方法进行计算。这种方式的优势在于它可以更好地利用现代线性函数库,并且比循环的方式运行得更快。(例如,在我的笔记本电脑上求解与上一章所讨论的问题相类似的MNIST分类问题时,最高可以达到两倍的速度)。在实践中,所有正规的反向传播算法库都使用了这种完全基于矩阵的方 或其变种。

下一节我们将介绍“为什么说反向传播算法很高效”


本文来源于哈工大SCIR

原文链接点击即可跳转

哈工大SCIR
哈工大SCIR

哈尔滨工业大学社会计算与信息检索研究中心

工程工程实现反向传播优化算法神经网络
暂无评论
暂无评论~