面向高维稀疏数据场景,阿里妈妈宣布开源XDL深度学习框架

据机器之心消息,阿里妈妈今日宣布开源业界首个面向高维稀疏数据场景的深度学习开源框架,成为了百度PaddlePaddle等之后,国内科技公司开源的深度学习框架之一。

据介绍,作为阿里巴巴旗下的大数据营销平台,阿里妈妈基于自身广告业务自主研发了深度学习框架X-Deep Learning(XDL),且已经大规模部署应用在核心生产场景。

阿里妈妈表示,这也是业界首个面向高维稀疏数据场景的深度学习开源框架,突破了现有深度学习开源框架大都面向图像、语音等低维连续数据而设计的现状。

数据的高维稀疏性既是阿里妈妈业务场景的重要特征,也是互联网的众多核心应用场景(如广告/推荐/搜索等)的特征,覆盖了大多数互联网企业的数据应用模式。对于难以与BAT研发能力比肩的众多互联网公司而言,阿里妈妈表示工业级深度学习框架XDL及内置算法方案的开源,将助力各大公司的技术升级,大大提升广告/推荐/搜索场景的精准性,缩短技术迭代周期。

面向广告、推荐、搜索研发,XDL覆盖互联网最核心的场景

随着深度学习的风靡,阿里妈妈以算法先行的方式进行了探索,实验效果非常好,但很快也发现,已有的开源框架很难满足其广告场景的规模性及生产迭代要求,自研面向工业应用的分布式深度学习框架随即被提上了日程。

据介绍,新框架XDL针对阿里妈妈业务数据高维稀疏的场景特点进行了优化,性能远超当时业界众多的开源框架,自2016年下半年开始逐步部署到阿里妈妈的业务系统,至2017年初全面完成了生产化。以阿里妈妈定向广告为例,XDL框架助力了业务场景所有核心算法的深度学习创新,当年,以XDL为基础的深度学习算法升级带来的广告收入提升超过百亿。

不仅是广告场景,互联网其它的核心场景如推荐、搜索等,也具有典型的高维稀疏数据特性,例如微博、抖音、今日头条等都属于该范畴内。因此,XDL在这些场景中也具有非常高的通用性,这为开源提供了基础。不管是以广告、推荐、搜索为代表业务的企业级用户,还是对此感兴趣的个人用户,都可以加入到开源计划当中。

值得一提的是,在阿里巴巴XDL开源之前,业界的深度学习开源框架基本是面向图像、语音处理等场景数据而设计,这与整个人工智能领域的研究重点有关,图像和语音是率先取得理论突破的场景,但在工业级互联网场景中实现大突破还属首次。

此外,据机器之心了解,XDL包含三个核心组件:全异步流水线并行的分布式运行时XDL-Flow;面向稀疏数据学习的高级模型服务器AMS;本地计算引擎,插件化支持任意开源框架的Backend Engine。

开放与易用,阿里巴巴引领业界高维稀疏数据的技术标准

据阿里妈妈透露,XDL框架从设计之初,就具备了足够的开放性和易用性,开源是水到渠成的一步。

整体而言,XDL具有多项核心能力。如XDL创造性地采用了桥接的架构设计理念,重点打造面向工业级应用的分布式规模能力,单机能够处理的计算则引用现有开源框架。这种桥接的架构,使得XDL跟业界的开源社区是无缝对接的,例如用户可以非常方便地在XDL框架上应用基于Tensorflow或者Pytorch编写的最先进开源深度学习算法。此外,对于已经在使用其它开源框架的企业或者个人用户,也可以在原有系统基础上轻松进行扩展,享受XDL带来的高维稀疏数据场景下极致的分布式能力。

除了核心的XDL训练框架外,阿里妈妈透露将全面开源面向高维稀疏数据场景的系统化解决方案,计划分批次对外发布,包括面向在线实时服务的高性能深度学习预估引擎、面向全库实时检索的全新深度学习匹配引擎;同时还内置阿里妈妈自主研发的一系列创新算法,涉及CTR预估模型、CVR预估模型、匹配召回模型、模型压缩训练算法等等。

阿里妈妈“让天下没有难做的营销”的使命在近年来又多了一层含义,Ad Tech 技术驱动广告的色彩明显。阿里妈妈产品技术部资深总监盖坤表示,阿里妈妈希望通过技术开源来赋能大家,引领业界高维稀疏数据计算的技术标准,推动整个领域技术的整体前进,让创新的算法、框架方案层出不穷。

产业XDL深度学习框架开源阿里妈妈阿里巴巴
21
相关数据
今日头条机构

“今日头条”是一款基于数据挖掘技术的个性化推荐引擎产品,它为用户推荐有价值的、个性化的信息,提供连接人与信息的新型服务,是国内移动互联网领域成长最快的产品之一。

https://bytedance.com/en
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

大数据技术技术

大数据,又称为巨量资料,指的是传统数据处理应用软件不足以处理它们的大或复杂的数据集的术语。

语音处理技术

语音处理(Speech processing),又称语音信号处理、人声处理,其目的是希望做出想要的信号,进一步做语音辨识,应用到手机界面甚至一般生活中,使人与电脑能进行沟通。

批次技术

模型训练的一次迭代(即一次梯度更新)中使用的样本集。

推荐文章
厉害