Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

254 页 PPT!这是一份写给 NLP 研究者的编程指南

最近 AllenNLP 在 EMNLP2018 上做了一个主题分享,名为「写给 NLP 研究者的编程指南」(Writing Code for NLP Research)。该演讲从写原型和写模块两方面介绍了 NLP 研究该如何复制别人的代码、测试自己的代码块、记录及分享研究等,总之在研究者也要高效码代码的年代,这是一份浓缩的实践经验。

这份内容干货满满,仅仅只是看了 slide 就知道是非常有意思的一次演讲了。slide 共有 254 页之多,在「赤乐君」知乎专栏分享内容的基础上,机器之心为大家介绍 NLP 及深度学习研究者的编程指南。

读者可以直接下载 PPT 了解详细内容,其中每一页 PPT 都带有简要的备注,根据这些备注可以将所有 PPT 以及整场演讲串联起来。

  • 下载地址:https://pan.baidu.com/s/1G4rYjZ9JV7FJt9UbIc0_gw

  • 赤乐君知乎专栏:https://zhuanlan.zhihu.com/p/48504619

下面是整个分享的大纲。通过这次演讲,你可以学到如何写代码来促进你的研究,以及可复现的实验。当然读者最好还是知道一点 NLP 相关的知识,因为这一份分享会以深度学习中的 NLP 问题作为案例。此外,能够大致读懂 Python 代码也是很好的背景,这篇文章都是以 Python 接口调用 DL 框架为例。

这里有两种写研究代码的模式,一种是写原型,一种是写组件。作为一名研究者,大多数时候我们都希望写原型,但是在没写好组件前是写不好原型的。而通过原型设计,有时候做出来的东西又是希望下次再复用的组件。因此这是编写代码的两种模式,它们并不独立。

我们先从写原型的方式开始介绍。

写原型

当我们开始写一个原型代码的时候,我们要做到下面三点。

1. 写代码要快

2. 跟踪实验结果

3. 分析模型结果

快速开发

要做到快速编程,不要从头开始写所有内容,而是使用框架。这里的框架不仅指 tensorflow 或 pytorch 之类的框架,也可以理解为模板。比如上图中如果写 training loop 的部分,已经有人写好了。我们只要看懂后,直接拿来用就行,没有必要从头开始自己写所有部分。

上面提到的一些内容,都是可以找到现成框架来套用的。很多时候我们在编程时遇到的问题不是构建模型,而是数据读取、预处理和写训练循环等部分。如果有人把你想用的东西模块化了,还等什么,直接拿来用啊!

当然拿来用也是有步骤的,首先我们应该获得基线模型的性能,这也是一个很好的研究实践。基线模型可能是别人的代码,你要是能修修改改就更好了。其次复现 SOTA 基线结果对于理解模型和做更多的研究是非常有帮助的。

要想快速开发,另一个建议就是先复制,再重构。要记住,我们是在写原型,不用在乎什么可用性,先把代码写 work 了再说。如果实现的效果不错的话,再回去重构

另外,我们要有好的编程习惯。比如起有意义的变量名,写注释帮助理解。记住,我们是写给人看的,不是机器!此外在使用基线模型做试验的时候,我们可以现在小数据集上做测试,并确保模型能准确读取数据。

如果在做原型设计时,我们将 LSTM 写死了(hard-code),那么在我们希望使用 Transformer 等模块的时候就需要重新改代码。因此使用多态可以借助更高级的抽象扩展代码,这样在换模块时就能只修改少量代码。

跟踪实验结果

在写原型的时候你需要运行很多东西,这导致很难追踪发生了什么以及对应的代码部分。

可以准备一个 Excel 表格,来记录实验结果。

黑箱对比对于上下文理解有帮助,但不能深入理解两个结果之间的关系,因为有太多的变量在同时变化。我们需要每次仅改变一个变量,可以在代码中设置「开关」,将开关配置一些全局状态 / 依赖注入。

每次只改变一个部分,方便跟踪实验结果的变化其原因在于哪里。

这里光是 embedder,我们就有很多种选择。

使用设定文件来记录模型的改变,方便我们以后查询当时的设定。

分析模型结果

在训练的时候,可视化对于分析模型表现是非常重要的。这个技能必须掌握。

Tensorboard 可以提供很多分析结果。

Tensorboard 能帮我们找到优化的 bug。比如上图中的 embedding 梯度有两个数量级的差别。

原因在于 embedding 的梯度是稀疏梯度,即只有一部分会被更新。但是 ADAM 中的动量系数是针对整个 embedding 计算的,所以解决方法是直接引入特定的优化器:DenseSparseAdam。

在解释你的模型的预测输出时,好的展示是静态预测;更好的展示是交互地查看预测;最好的展示是交互地查看内部过程。

对于预测结果,如果可以做到交互式的方式来查看的话,是最好的。

开发组件

与写原型不同,开发可重复使用的组件有很多要注意的地方。我们的代码需要写清楚,这样就能聚焦于建模决策,而不考虑代码到底在做什么。

Code Reveiw 是必不可少的。Review 的时候,不仅能发现错误,还能提高代码的可读性。

如果我们不是软件开发人员的话,对于持续整合 以及构建自动化 这两个词可能比较陌生。通常我们只说持续整合的时候,也包含了构建自动化的意思。想要做到这点,要多写测试才行。

当然,如果我们不是开发一个很多人都会用到的库,上面这些步骤是用不到的。不过测试很重要,如果是原型开发,也要做一些最基本的测试。

如上对读取的数据进行测试,看是否正确。这里在进行单元测试时常用的就是 assert 语句,如果程序有问题,运行到这边就自然会报错,这样可以让我们尽快找到错误。

如上所示,当然我们也可以使用 assert 语句检查维度是否一致。这在模型运算部分经常会用到,例如判断每个卷积层输出结果的尺寸和深度等。可以看到这两种测试的代码都不会很多。所以不要犯懒了,好好写测试吧。

关于 AllenNLP 库的一些介绍,这里就不花时间讨论了,感兴趣的可以看 slide 中 p141~p205 的部分。下面直接进入分享的部分。

分享研究

简化安装的流程,令代码运行在任何平台,使用隔离的环境。

下面是使用 Docker 的一些优点。

用 docker 开发的好处不用多说,大家想必也已经都知道了。当然,缺点也是有的。

至于 Python 的包管理系统,AllenNLP 采用了 ANACONDA。

Docker 是不错,但不适合做本地开发,这样的话,使用一些本地的包管理系统反而更方便。

最后做个总结。


  • 快速开发原型(要安全)

  • 写安全的产品代码(要快)

  • 好的流程有利于做出好的研究

  • 使用正确的抽象

  • 查看 AllenNLP(广告)

这次分享的 slide 看了几遍,很多地方看得自己脸上发热,不写测试什么的说到了痛处。现在人工智能领域对于算法工程师的要求已经不是能掉个包,谈谈研究那么简单了,工程实践能力已经变得越来越重要。写优秀的代码,做优秀的研究,二者是一个互相促进的过程。

工程NLPAllenNLP编程
12
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

重构技术

代码重构(英语:Code refactoring)指对软件代码做任何更动以增加可读性或者简化结构而不影响输出结果。 软件重构需要借助工具完成,重构工具能够修改代码同时修改所有引用该代码的地方。在极限编程的方法学中,重构需要单元测试来支持。

人工智能技术

在学术研究领域,人工智能通常指能够感知周围环境并采取行动以实现最优的可能结果的智能体(intelligent agent)

张量技术

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

查询技术

一般来说,查询是询问的一种形式。它在不同的学科里涵义有所不同。在信息检索领域,查询指的是数据库和信息系统对信息检索的精确要求

动量技术

优化器的一种,是模拟物理里动量的概念,其在相关方向可以加速SGD,抑制振荡,从而加快收敛

长短期记忆网络技术

长短期记忆(Long Short-Term Memory) 是具有长期记忆能力的一种时间递归神经网络(Recurrent Neural Network)。 其网络结构含有一个或多个具有可遗忘和记忆功能的单元组成。它在1997年被提出用于解决传统RNN(Recurrent Neural Network) 的随时间反向传播中权重消失的问题(vanishing gradient problem over backpropagation-through-time),重要组成部分包括Forget Gate, Input Gate, 和 Output Gate, 分别负责决定当前输入是否被采纳,是否被长期记忆以及决定在记忆中的输入是否在当前被输出。Gated Recurrent Unit 是 LSTM 众多版本中典型的一个。因为它具有记忆性的功能,LSTM经常被用在具有时间序列特性的数据和场景中。

优化器技术

优化器基类提供了计算梯度loss的方法,并可以将梯度应用于变量。优化器里包含了实现了经典的优化算法,如梯度下降和Adagrad。 优化器是提供了一个可以使用各种优化算法的接口,可以让用户直接调用一些经典的优化算法,如梯度下降法等等。优化器(optimizers)类的基类。这个类定义了在训练模型的时候添加一个操作的API。用户基本上不会直接使用这个类,但是你会用到他的子类比如GradientDescentOptimizer, AdagradOptimizer, MomentumOptimizer(tensorflow下的优化器包)等等这些算法。

推荐文章
暂无评论
暂无评论~