Auto Byte

专注未来出行及智能汽车科技

微信扫一扫获取更多资讯

Science AI

关注人工智能与其他前沿技术、基础学科的交叉研究与融合发展

微信扫一扫获取更多资讯

深思考获SMP2018-ECDT第一名,解读中文语义理解技术

中文语义理解技术长期以来被誉为“人工智能皇冠上的明珠”,是人工智能领域最难攻克的堡垒。SMP2018-ECDT由中国中文信息学会(人工智能自然语义理解、自然语言处理最权威学会)主办,旨在评测中文语义理解与人机交互的最高水平。近日SMP2018-ECDT结果公布,据机器之心了解深思考人工智能(iDeepWise.AI)作为上届全国冠军,继续成功加冕,包揽任务一、任务二两项大奖,再次斩获中文语义理解与多轮人机交互全国第一名,蝉联2017、2018两届全国冠军。

由中国中文信息学会社会媒体处理专委会主办、哈尔滨工业大学承办的第七届全国社会媒体处理大会(SMP 2018)于 2018 年 8 月 2 日 - 4 日在哈尔滨召开。8月3日,SMP2018举行了中文人机对话技术评测(ECDT)颁奖仪式,深思考人工智能首席机器学习科学家王泳博士受邀参加,并现场分享深思考人工智能SMP2018用户意图领域分类技术报告与特定域任务型人机对话在线评测技术报告。

SMP2018深思考人工智能用户意图领域分类技术报告

摘要:本文介绍深思考人工智能公司开发的用户意图领域分类系统。针对本次测评所关注的31个类别,我们采用了领域关键词的识别方式和多分类器的领域分类相结合的方案,领域关键词主要来源于数据集的统计和外部网络资源的采集,多分类器采用了长短期记忆网络(LSTM)的变体GRU。在本次测评中,领域分类效果较为出色,达到预期结果。

1 引言

近年来,人机对话技术受到了学术界和产业界的广泛关注。在学术界,人机对话相关技术不断发展,如语音识别、对话管理、自然语言生成等。在产业界,多家公司开发出了许多人机对话产品,如聊天机器人siri、情感陪护机器人小忆等。人机对话主要分为目标驱动型(或任务驱动型)和非目标驱动型对话,其中典型的任务驱动型人机对话系统主要包含自然语言理解(NLU)、对话管理(DM)、自然语言生成(NLG)三个模块。

自然语言理解(NLU)应用在我们的日常生活中变得越来越重要,其主要目标是识别用户输入话语的领域和意图,例如:用户说:“我要买一张下周去上海的飞机票,国航的”,这时,NLU需要准确识别出这句话所属的领域是机票,才能给用户返回正确的回复结果。领域分类[1]属于文本分类,常见的传统领域分类方法有SVM[2]随机森林、KNN等,随着深度学习的不断发展,深度学习的技术也逐渐应用到自然语言理解领域,如卷积神经网络CNN、循环神经网络RNN[3]以及长短期记忆网络LSTM[4]等。

2 用户意图领域分类系统

2.1 技术架构

图1是用于解决意图分类问题的总体技术架构。在这个架构中用到了31分类器、领域关键词词典、领域句子词典共同来决策句子的意图。

(1)31类领域分类器:采用GRU(Gated Recurrent Unit)神经网络训练31类分类器,并用K折交叉验证用于评估模型效果。

(2)领域关键词词典:基于数据的领域关键词提取,并结合人工知识对领域关键词进行了扩展。

图1 技术架构

2.2 关键词识别

基于数据集,我们统计了其中的各个领域的特有关键词,经人工筛选后加入关键词词典;基于外部网络资源,我们搜集了个别类的常见关键词,如股票领域、彩票领域、疾病领域等。

2.3 基于GRU的领域分类

长短期记忆网络(LSTM)是一种特殊的RNN类型,通过门控机制使循环神经网络不仅能记忆过去的信息,同时还能选择性地忘记一些不重要的信息而对长期语境等关系进行建模,缓解了RNN的梯度消失问题,而GRU作为LSTM的变体,在保持了LSTM的效果的同时又使结构更加简单,所以在某些任务上更为流行。本文针对同一数据集,验证了不同模型的分类效果,如传统分类模型LR、KNN、SVM、RF等,深度学习模型ICDCNN、FastText、GRU等。

3 实验方案

3.1 数据集及任务介绍

此次用户意图领域分类任务包括闲聊和垂类两大类,其中垂类分为天气(weather)、航班(flight)、火车(train)等30小类,总共31个类别,数据分为训练集、测试集、验证集,在官方的数据(train:2299,dev:770)基础上,我们对31个类别分别进行了数据扩展,扩展后训练集每个类的数据如图2所示。

图2 扩展后类别数据

3.2 实验结果与分析

我们在同一训练集和开发集的情况下尝试了不同的分类模型,如传统分类模型LR、KNN、SVM、RF等,深度学习模型ICDCNN、FastText、GRU等,表1是各个模型的结果。

表1 各模型结果

从上表可看出,传统的分类模型在这个数据集上表现并不出色。在深度学习模型中,GRU比ICDCNN、FastText表现都要好很多,F1值比它们高了3.81和5.15个百分点,原因是文本属于一种序列化结构,而GRU由于其特殊的网络结构,比较适合处理序列化问题。所以,我们最终选择了GRU模型。

在GRU模型的基础上,我们比较了扩展数据前后的F1值,结果如表2所示。

表2 扩展前后的F1值

从上表可看出,扩展数据对模型的效果提升十分明显。

最后,我们在GRU模型的基础上,使用了关键词词典,F1值提升了约1个百分点,结果如表3所示。

表3 加关键词前后的F1值

4 总结

自然语言处理/理解是人工智能的一个终极目标,在人机对话产品方面,深思考人工智能iDeepWise机器人已经实现了在音乐、天气、酒店、美食、火车票、机票、医疗问诊、医疗领域智能客服、车载等多个垂直领域的多轮人机交互引擎。本文介绍的基于GRU模型的领域分类系统,并在模型之上加入关键词词典,在处理人机对话中的短文本上有较好的效果。

参考文献

[1] Ravuri S, Stolcke A. A comparative study of recurrent neural network models for lexical domain classification C]// Proceedings of the 41th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2016), 2016: 6075-6079.

[2] Haffner P, Tur G, Wright J H. Optimizing SVMs for complex call classification[C]// Proceedings of the 28th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2003), 2003: I-632-I-635.

[3] Xu P, Sarikaya R. Contextual domain classification in spoken language understanding systems using recurrent neural network[C]// IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2014:136-140.

[4] Suman Ravuri and Andreas Stolcke, “Recurrent neural network and LSTM models for lexical utterance classification,” in Proc. Interspeech, Dresden, Sept. 2015.

深思考人工智能SMP2018特定域任务型人机对话在线评测技术报告

摘要:本文主要介绍了深思考人工智能机器人科技(北京)有限公司的研发团队针对SMP2018特定域任务型人机对话评测任务所研发的系统,并详细介绍了该系统的技术实现细节。本次评测任务的特定领域包括:机票类、火车票类、酒店类3个垂直领域,相比于上一届特定域任务型人机对话在线评测任务,本届评测的最大变化就是加入了多意图识别以及多意图场景下的预定或查询任务。为了实现多意图场景下的多轮人机交互,深思考人工智能团队重点进行了多意图场景下的多标签分类、意图理解与推理以及对话管理模块的研究和设计。最终评测结果显示,利用上述技术的人机对话系统能够取得理想的效果。

引言

SMP2018中文人机对话技术评测(ECDT)的任务二是特定域任务型人机对话在线评测任务,本次评测任务的特定领域包括:机票类、火车票类、酒店类3个垂直领域,系统通过与测试人员实时在线对话完成相应的预定或查询任务,从而满足测试人员的需求。相比于上一届特定域任务型人机对话在线评测任务,本届评测的最大变化就是加入了多意图识别以及多意图场景下的预定或查询任务。

本次评测扩充的多意图场景下的意图识别和相应的预定或查询任务相比较于单意图的处理在难度上有了很大的提升,这里面涉及到意图的多标签分类、意图间关系的推理以及意图之间属性特征的推理。为了实现多意图场景下的多轮人机交互,深思考人工智能团队重点进行了多意图场景下的多标签分类、意图理解与属性推理以及对话管理模块的研究和设计。

1 系统实现

我们首先将工作重心主要放在意图的层次分类中,将多意图看做是一个大类,对多意图进行多标签分类。其次进行多意图问句和单意图问句的属性抽取以及多意图的属性推理。然后在对话管理模块中通过深度强化学习Deep Reinforcement Learning进行信息和状态的处理。最后各个业务模块的逻辑处理,从而实现多任务场景下的多轮交互。系统的总体框架图如图-1所示:

图-1人机多轮交互系统总体框架

1.1 输入预处理

在特定域任务型人机对话在线评测系统中,首先需要对用户输入的问句进行纠错,其次还需要进行分词、词性标注,最后进行补全和指代消解。

1.2 意图分类

在多领域的人机交互系统中,意图分类是整个系统的核心。当用户说了一句话时,首先要知道这句话是哪个领域的问题,才能交给这个领域的业务处理模块进行处理。因为本次测评加入了多意图识别,这属于一个多标签分类问题,和传统的意图分类有很大的差别。

在这里我们采用层次分类的思想,首先利用GRU模型对意图进行粗粒度划分,从而划分出多意图,然后在多意图中利用胶囊网络进行多标签分类从而识别出多意图中的子意图。长短期记忆网络(LSTM)是一种特殊的RNN类型,通过门控机制使循环神经网络不仅能记忆过去的信息,同时还能选择性地忘记一些不重要的信息而对长期语境等关系进行建模,缓解了RNN的梯度消失问题,而GRU作为LSTM的变体,在保持了LSTM的效果的同时又使结构更加简单,所以在某些任务上更为流行。首先我们选用了基于GRU模型的领域分类系统,并在模型之上加入关键词词典,在处理人机对话中的短文本上有较好的效果。胶囊网络[1]是Hitton针对卷积神经网络的缺陷而提出的,卷积神经网络的核心在卷积层,它能够抽取出更高维的特征,但是在抽象过程中没能够将低层特征之间的位置关系考虑进去。而胶囊网络作为一个新的神经网络框架,它是由胶囊而不是由神经元构成的,其中一个胶囊就是一个向量神经元,它的输出是一个向量,所以我们利用胶囊网络实现多标签分类。

1.3 属性抽取与推理

属性抽取也可以称为序列标注,可以以字为单位进行序列标注,也可以以词为单位进行序列标注,经过实验验证发现,利用字为单位进行序列标注可以取得比较好的效果。我们一个设计了13个待标注标签,分别是:time、to_address、address、num_day、room_type、hotel_name、quantity、money、seat_type、train_type、berth_type、airline_company、flight_no。其中标注采用的是BIEO。B表示一个待标注标签的起始字;I表示一个待标注标签的非起始非末尾字;E表示一个待标注标签的末尾字;O表示非待标注标签字,该模块我们采用Bi-LSTM+CRF[2]进行序列标注,其中Bi-LSTM能够充分的捕捉上下文特征信息,而CRF中有转移特征,即它会考虑输出label之间的顺序性。

多意图问句中会涉及到属性的推理与共享,其中时间属性和地点属性的推理最常见,依存句法分析能够分析出各个语义角色之间的依存关系,从而可以利用这些依存关系进行属性间的推理,而意图间的属性是否可以共享则根据意图之间的关系确定。比如:

预订明天北京上海的机票经济舱价格五百元左右再预定第二天返程的火车票动车二等座

其中这里面第二个意图的时间属性“第二天”需要根据第一个意图的时间属性“明天”进行推理。此外第二个意图的地点属性也需要根据第一个意图的地点属性来进行推理。

1.4 对话管理

在多轮交互时,我们设计了对话管理模块,该模块需要识别出本轮意图已经进行到哪一步,因为用户有时会跳出该意图,该模块可以将跳出的意图恢复,从而实现多轮交互。并且可以实现多任务的衔接和信息的共享。

对话管理模块的决策器中采用了深度强化学习Deep Reinforcement Learning中的Deep Q Learning算法来训练一个最佳上下文决策模型。其中决策过程为一个马尔可夫决策过程(MDPs),反复在会话中间节点状态S、会话话术行为A、回报R、状态S...之间轮换直到一次多轮对话结束,最终获得最佳回报即能够正确完成任务的Q network模型,该模型从而可以决策当前的会话由哪个业务模块去处理。

1.5 意图理解及处理

当对话管理模块将当前会话交给某个领域业务处理模块进行处理时,该模块就需要对这句话中用户的意图进行理解。虽然在这些特定的任务型领域,用户的意图相对比较确定,但人们的语言却是无法限定的,所以即使同一个意图的表达,不同的人、不同的场景、不同的时间,所用的文字话术多少会有些不同。

我们使用了文本匹配模型进行用户的意图理解,为了达到良好的匹配效果,所以使用双边多角度文本匹配模型Bimpm[3]进行用户问句与FAQ中话术的匹配(如图-2)。

图-2 Bimpm模型框架图

1.6 业务领域及逻辑处理

对于每个领域,该领域的业务逻辑处理模块需要确定该领域业务所需的信息点。每个领域的业务逻辑处理模块会根据当前会话的意图理解结果,将抽取解析到的信息,填充或者更新到对应的槽位。并根据当前各槽位的缺失情况进行交互引导,从而完善业务处理所需信息,进而完成用户的任务请求。

2 应用与意义

基于上述技术,深思考研发团队推出了新一代ideepwise交互机器人,该交互机器人可以在特定领域场景下达到近似于人一样流畅的交流,其中最为核心的是可以有效识别多意图问句中的多个子意图并对子意图的属性值进行准确的推理,此外在对话管理模块中通过深度强化学习Deep Reinforcement Learning进行信息和状态的处理,从而实现特定域任务型多轮语义交互。

参考文献

[1] Zhao W, Ye J, Yang M, et al. Investigating Capsule Networks with Dynamic Routing for Text Classification[J]. arXiv preprint arXiv:1804.00538, 2018.

[2] Dong C, Zhang J, Zong C, et al. Character-Based LSTM-CRF with Radical-Level Features for Chinese Named Entity Recognition[C]//International Conference on Computer Processing of Oriental Languages. Springer International Publishing, 2016: 239-250.

[3] Wang Z, Hamza W, Florian R. Bilateral multi-perspective matching for natural language sentences[J]. arXiv preprint arXiv:1702.03814, 2017.

理论深思考创业公司NLP语义理解
2
相关数据
深度学习技术

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

深度强化学习技术

强化学习(Reinforcement Learning)是主体(agent)通过与周围环境的交互来进行学习。强化学习主体(RL agent)每采取一次动作(action)就会得到一个相应的数值奖励(numerical reward),这个奖励表示此次动作的好坏。通过与环境的交互,综合考虑过去的经验(exploitation)和未知的探索(exploration),强化学习主体通过试错的方式(trial and error)学会如何采取下一步的动作,而无需人类显性地告诉它该采取哪个动作。强化学习主体的目标是学习通过执行一系列的动作来最大化累积的奖励(accumulated reward)。 一般来说,真实世界中的强化学习问题包括巨大的状态空间(state spaces)和动作空间(action spaces),传统的强化学习方法会受限于维数灾难(curse of dimensionality)。借助于深度学习中的神经网络,强化学习主体可以直接从原始输入数据(如游戏图像)中提取和学习特征知识,然后根据提取出的特征信息再利用传统的强化学习算法(如TD Learning,SARSA,Q-Learnin)学习控制策略(如游戏策略),而无需人工提取或启发式学习特征。这种结合了深度学习的强化学习方法称为深度强化学习。

机器学习技术

机器学习是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。

文本分类技术

该技术可被用于理解、组织和分类结构化或非结构化文本文档。文本挖掘所使用的模型有词袋(BOW)模型、语言模型(ngram)和主题模型。隐马尔可夫模型通常用于词性标注(POS)。其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。

时间递归神经网络技术

时间递归神经网络 (aka.循环神经网络, RNN) 是一类擅长处理序列数据的神经网络,其单元连接形成一个有向环。一般人工神经网络(ANN)由多层神经元组成,典型的连接方式是在前馈神经网络中,仅存在层与层之间的互相连接,而同层神经元之间没有连接。RNN在此基础上结合了隐藏层的循环连接,从而能从序列或时序数据中学习特征和长期依赖关系。RNN隐藏层的每一单独计算单元对应了数据中某个时间节点的状态,它可以是简单神经元、神经元层或各式的门控系统。 每一单元通过参数共享的层间顺序连接,并随着数据序列传播。这一特性使得RNN中每一单元的状态都取决于它的过去状态,从而具有类似“记忆”的功能,可以储存并处理长时期的数据信号。 大多数RNN能处理可变长度的序列,理论上也可以建模任何动态系统。

词性标注技术

词性标注是指为分词结果中的每个单词标注一个正确的词性的程序,也即确定每个词是名词、动词、形容词或其他词性的过程。

验证集技术

验证数据集是用于调整分类器超参数(即模型结构)的一组数据集,它有时也被称为开发集(dev set)。

神经网络技术

(人工)神经网络是一种起源于 20 世纪 50 年代的监督式机器学习模型,那时候研究者构想了「感知器(perceptron)」的想法。这一领域的研究者通常被称为「联结主义者(Connectionist)」,因为这种模型模拟了人脑的功能。神经网络模型通常是通过反向传播算法应用梯度下降训练的。目前神经网络有两大主要类型,它们都是前馈神经网络:卷积神经网络(CNN)和循环神经网络(RNN),其中 RNN 又包含长短期记忆(LSTM)、门控循环单元(GRU)等等。深度学习是一种主要应用于神经网络帮助其取得更好结果的技术。尽管神经网络主要用于监督学习,但也有一些为无监督学习设计的变体,比如自动编码器和生成对抗网络(GAN)。

随机森林技术

在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。 Leo Breiman和Adele Cutler发展出推论出随机森林的算法。而"Random Forests"是他们的商标。这个术语是1995年由贝尔实验室的Tin Kam Ho所提出的随机决策森林(random decision forests)而来的。这个方法则是结合Breimans的"Bootstrap aggregating"想法和Ho的"random subspace method" 以建造决策树的集合。

卷积神经网络技术

卷积神经网路(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网路由一个或多个卷积层和顶端的全连通层(对应经典的神经网路)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网路能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网路在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网路,卷积神经网路需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。 卷积网络是一种专门用于处理具有已知的、网格状拓扑的数据的神经网络。例如时间序列数据,它可以被认为是以一定时间间隔采样的一维网格,又如图像数据,其可以被认为是二维像素网格。

逻辑技术

人工智能领域用逻辑来理解智能推理问题;它可以提供用于分析编程语言的技术,也可用作分析、表征知识或编程的工具。目前人们常用的逻辑分支有命题逻辑(Propositional Logic )以及一阶逻辑(FOL)等谓词逻辑。

分类问题技术

分类问题是数据挖掘处理的一个重要组成部分,在机器学习领域,分类问题通常被认为属于监督式学习(supervised learning),也就是说,分类问题的目标是根据已知样本的某些特征,判断一个新的样本属于哪种已知的样本类。根据类别的数量还可以进一步将分类问题划分为二元分类(binary classification)和多元分类(multiclass classification)。

聊天机器人技术

聊天机器人是经由对话或文字进行交谈的计算机程序。能够模拟人类对话,通过图灵测试。 聊天机器人可用于实用的目的,如客户服务或资讯获取。有些聊天机器人会搭载自然语言处理系统,但大多简单的系统只会撷取输入的关键字,再从数据库中找寻最合适的应答句。

神经元技术

(人工)神经元是一个类比于生物神经元的数学计算模型,是神经网络的基本组成单元。 对于生物神经网络,每个神经元与其他神经元相连,当它“兴奋”时会向相连的神经元发送化学物质,从而改变这些神经元的电位;神经元的“兴奋”由其电位决定,当它的电位超过一个“阈值”(threshold)便会被激活,亦即“兴奋”。 目前最常见的神经元模型是基于1943年 Warren McCulloch 和 Walter Pitts提出的“M-P 神经元模型”。 在这个模型中,神经元通过带权重的连接接处理来自n个其他神经元的输入信号,其总输入值将与神经元的阈值进行比较,最后通过“激活函数”(activation function)产生神经元的输出。

语音识别技术

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

查询技术

一般来说,查询是询问的一种形式。它在不同的学科里涵义有所不同。在信息检索领域,查询指的是数据库和信息系统对信息检索的精确要求

马尔可夫决策过程技术

马尔可夫决策过程为决策者在随机环境下做出决策提供了数学架构模型,为动态规划与强化学习的最优化问题提供了有效的数学工具,广泛用于机器人学、自动化控制、经济学、以及工业界等领域。当我们提及马尔可夫决策过程时,我们一般特指其在离散时间中的随机控制过程:即对于每个时间节点,当该过程处于某状态(s)时,决策者可采取在该状态下被允许的任意决策(a),此后下一步系统状态将随机产生,同时回馈给决策者相应的期望值,该状态转移具有马尔可夫性质。

自然语言处理技术

自然语言处理(英语:natural language processing,缩写作 NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。自然语言理解系统把自然语言转化为计算机程序更易于处理的形式。

梯度消失问题技术

梯度消失指的是随着网络深度增加,参数的梯度范数指数式减小的现象。梯度很小,意味着参数的变化很缓慢,从而使得学习过程停滞,直到梯度变得足够大,而这通常需要指数量级的时间。这种思想至少可以追溯到 Bengio 等人 1994 年的论文:「Learning long-term dependencies with gradient descent is difficult」,目前似乎仍然是人们对深度神经网络的训练困难的偏好解释。

交叉验证技术

交叉验证,有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法。于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证。 一开始的子集被称为训练集。而其它的子集则被称为验证集或测试集。交叉验证的目标是定义一个数据集到“测试”的模型在训练阶段,以便减少像过拟合的问题,得到该模型将如何衍生到一个独立的数据集的提示。

自然语言生成技术

自然语言生成(NLG)是自然语言处理的一部分,从知识库或逻辑形式等等机器表述系统去生成自然语言。这种形式表述当作心理表述的模型时,心理语言学家会选用语言产出这个术语。自然语言生成系统可以说是一种将资料转换成自然语言表述的翻译器。不过产生最终语言的方法不同于编译程式,因为自然语言多样的表达。NLG出现已久,但是商业NLG技术直到最近才变得普及。自然语言生成可以视为自然语言理解的反向: 自然语言理解系统须要厘清输入句的意涵,从而产生机器表述语言;自然语言生成系统须要决定如何把概念转化成语言。

人机交互技术

人机交互,是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室。

暂无评论
暂无评论~