阿里开源语音识别模型DFSMN,识别准确率提升至96.04%

近日,阿里巴巴达摩院机器智能实验室语音识别团队,推出了新一代语音识别模型——DFSMN,不仅被谷歌等国外巨头在论文中重点引用,更将语音识别准确率纪录提升至96.04%(基于世界最大的免费语音识别数据库LibriSpeech)。此外,该团队宣布开源DFSMN模型,共享这一成果。

项目地址:https://github.com/alibaba/Alibaba-MIT-Speech

阿里在GitHub平台上开源了自主研发的DFSMN语音识别模型

语音识别人机交互中的核心技术,在智能音响、智能家居、机器人自动驾驶等领域都有广泛应用。2017年,微软语音识别研究团队在黄学东的带领下,将词错率降至 5.1%(基于Switchboard)。在技术研究的「最后一英里」,每 0.1 个百分点的进步都异常艰难。此次阿里巴巴开源的语音识别模型DFSMN,将语音识别准确率纪录提升至96.04%(基于语音识别数据库LibriSpeech)。

据阿里介绍,DFSMN语音识别模型,对比目前业界使用最为广泛的LSTM模型,训练速度更快、识别准确率更高。采用全新DFSMN模型的智能音响或智能家居设备,相比前代技术深度学习训练速度提到了3倍,语音识别速度提高了2倍。

著名语音识别专家,西北工业大学教授谢磊表示:“阿里此次开源的DFSMN模型,在语音识别准确率上的稳定提升是突破性的。是近年来深度学习语音识别领域最具代表性的成果之一。对全球学术界和AI技术应用都有巨大影响。”

此外,据机器之心了解,在刚结束的云栖大会武汉峰会上,装有DFSMN语音识别模型的“AI收银员”在与真人店员的PK中,在嘈杂环境下准确识别了用户的语音点单,在短短49秒内点了34杯咖啡。此外,装备这一语音识别技术的自动售票机也已在上海地铁“上岗”。

产业
2
相关数据
人机交互技术
Human-computer interaction

人机交互,是一门研究系统与用户之间的交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。人机交互界面通常是指用户可见的部分。用户通过人机交互界面与系统交流,并进行操作。小如收音机的播放按键,大至飞机上的仪表板、或是发电厂的控制室。

自动驾驶技术
self-driving

从 20 世纪 80 年代首次成功演示以来(Dickmanns & Mysliwetz (1992); Dickmanns & Graefe (1988); Thorpe et al. (1988)),自动驾驶汽车领域已经取得了巨大进展。尽管有了这些进展,但在任意复杂环境中实现完全自动驾驶导航仍被认为还需要数十年的发展。原因有两个:首先,在复杂的动态环境中运行的自动驾驶系统需要人工智能归纳不可预测的情境,从而进行实时推论。第二,信息性决策需要准确的感知,目前大部分已有的计算机视觉系统有一定的错误率,这是自动驾驶导航所无法接受的。

机器人技术
Robotics

机器人学(Robotics)研究的是「机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理」 [25] 。 机器人可以分成两大类:固定机器人和移动机器人。固定机器人通常被用于工业生产(比如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。之前章节中提及的技术都可以在机器人上得到应用和集成,这也是人工智能领域最早的终极目标之一。

语音识别技术
Speech Recognition

自动语音识别是一种将口头语音转换为实时可读文本的技术。自动语音识别也称为语音识别(Speech Recognition)或计算机语音识别(Computer Speech Recognition)。自动语音识别是一个多学科交叉的领域,它与声学、语音学、语言学、数字信号处理理论、信息论、计算机科学等众多学科紧密相连。由于语音信号的多样性和复杂性,目前的语音识别系统只能在一定的限制条件下获得满意的性能,或者说只能应用于某些特定的场合。自动语音识别在人工智能领域占据着极其重要的位置。

深度学习技术
Deep learning

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法。观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。而使用某些特定的表示方法更容易从实例中学习任务(例如,人脸识别或面部表情识别)。 近年来监督式深度学习方法(以反馈算法训练CNN、LSTM等)获得了空前的成功,而基于半监督或非监督式的方法(如DBM、DBN、stacked autoencoder)虽然在深度学习兴起阶段起到了重要的启蒙作用,但仍处在研究阶段并已获得不错的进展。在未来,非监督式学习将是深度学习的重要研究方向,因为人和动物的学习大多是非监督式的,我们通过观察来发现世界的构造,而不是被提前告知所有物体的名字。 至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

准确率技术
Accuracy

分类模型的正确预测所占的比例。在多类别分类中,准确率的定义为:正确的预测数/样本总数。 在二元分类中,准确率的定义为:(真正例数+真负例数)/样本总数

推荐文章
中国《人工智能标准化白皮书2018》发布完整版(附下载)
转载2
平安科技的人工智能实践:人脸识别用于17个子公司,拥有18项新技术
微胖
百度语音识别技术负责人李先刚:如何利用Deep CNN大幅提升识别准确率?
机器之心
返回顶部