英伟达推出自主机器新平台NVIDIA Isaac:集成软硬件与模拟器

  1. 今日,NVIDIA 创始人兼首席执行官黄仁勋在 Computex 2018 上正式推出包含全新硬件、软件和虚拟世界机器人模拟器的 NVIDIA Isaac。

黄仁勋表示:「AI 是我们这一时代最强大的技术力量。第一阶段人工智能将实现全新的软件自动化水平,从而帮助诸多行业提高生产力;其后,人工智能与传感器和执行器相结合,将成为新一代自主机器的核心。终有一天,数十亿台智能机器将用于制造、送货上门服务、仓储物流等领域。」

Jetson Xavier

据介绍,NVIDIA Isaac 的核心是 Jetson Xavier,这是英伟达发布的全球首款专为机器人设计的计算机。该计算机拥有超过 90 亿个晶体管,可提供每秒 30 万亿次操作以上的性能,这一处理能力高于功能强大的工作站,同时能耗仅有照明灯泡的三分之一。

Jetson Xavier 拥有 6 种高性能处理器,包括 1 个 Volta Tensor Core GPU、1 个 8 核 ARM64 CPU、2 个 NVDLA 深度学习加速器、1 个图像处理器、1 个视觉处理器和 1 个视频处理器。这些处理器使其能够同时且实时地处理数十种算法,以用于传感器处理、测距、定位和绘图、视觉和感知以及路径规划。

Isaac 机器人软件是 NVIDIA 为 Jetson Xavier 的模拟、训练、验证和部署提供的一个工具箱。该机器人软件包含以下内容: 

  • Isaac SDK :一套 API 和工具,可借助全面加速的库,开发机器人算法软件及运行时框架。
  • Isaac IMX :Isaac 智能机器加速应用,是 NVIDIA 开发的机器人算法软件的集合。
  • Isaac Sim:高度逼真的虚拟仿真环境,可供开发者训练自主机器,并使用 Jetson Xavier 进行硬件在环测试。

最后,据机器之心了解,包含 Isaac 机器人软件的 NVIDIA Jetson Xavier 开发者工具包定价为 1299 美元。全球分销商将于 8 月起开始首批供货。

产业
11
相关数据
图像处理技术
Image processing

图像处理是指对图像进行分析、加工、和处理,使其满足视觉、心理或其他要求的技术。 图像处理是信号处理在图像领域上的一个应用。 目前大多数的图像均是以数字形式存储,因而图像处理很多情况下指数字图像处理。

感知技术
perception

知觉或感知是外界刺激作用于感官时,脑对外界的整体的看法和理解,为我们对外界的感官信息进行组织和解释。在认知科学中,也可看作一组程序,包括获取信息、理解信息、筛选信息、组织信息。与感觉不同,知觉反映的是由对象的各样属性及关系构成的整体。

机器人技术
Robotics

机器人学(Robotics)研究的是「机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理」 [25] 。 机器人可以分成两大类:固定机器人和移动机器人。固定机器人通常被用于工业生产(比如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。之前章节中提及的技术都可以在机器人上得到应用和集成,这也是人工智能领域最早的终极目标之一。

深度学习技术
Deep learning

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法。观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。而使用某些特定的表示方法更容易从实例中学习任务(例如,人脸识别或面部表情识别)。 近年来监督式深度学习方法(以反馈算法训练CNN、LSTM等)获得了空前的成功,而基于半监督或非监督式的方法(如DBM、DBN、stacked autoencoder)虽然在深度学习兴起阶段起到了重要的启蒙作用,但仍处在研究阶段并已获得不错的进展。在未来,非监督式学习将是深度学习的重要研究方向,因为人和动物的学习大多是非监督式的,我们通过观察来发现世界的构造,而不是被提前告知所有物体的名字。 至今已有数种深度学习框架,如卷积神经网络和深度置信网络和递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。

张量技术
Tensor

张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 维空间内,有 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。称为该张量的秩或阶(与矩阵的秩和阶均无关系)。 在数学里,张量是一种几何实体,或者说广义上的“数量”。张量概念包括标量、矢量和线性算子。张量可以用坐标系统来表达,记作标量的数组,但它是定义为“不依赖于参照系的选择的”。张量在物理和工程学中很重要。例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。工程上最重要的例子可能就是应力张量和应变张量了,它们都是二阶张量,对于一般线性材料他们之间的关系由一个四阶弹性张量来决定。

推荐文章
为什么需要对未来主义保持警惕?
PSI内容合伙人
英伟达CEO黄仁勋解读智能工业革命:GPU深度学习大爆炸
机器之心
耶鲁教授与谷歌和 IBM 赛跑,争造世界上第一台真正意义的量子计算机
机器之心1
返回顶部