Kade Killary作者Nurhachu Null 思源参与

简单快捷的数据处理,数据科学需要注意的命令行

对很多数据科学家而言,他们的数据操作经常需要使用 Pandas 或者 Tidyverse。理论上,这个说法没有任何错误,毕竟这就是这些工具存在的原因。然而,对于分隔符转换这样的简单任务而言,这些工具往往是大材小用,我们可以直接使用命令行快速处理。

命令行应该是每个开发者都希望掌握的,尤其是数据科学家。熟悉终端的来龙去脉可以毫无疑问地可以让我们变得更加有效率,因此命令行还是计算机技术中的一个很棒的历史课。例如,awk 这个数据驱动的脚本语言是 1977 年在 Brina Kernighan 的帮助下首次出现的,Brina Kernighan 就是 K&R 这本书中的 K。在 50 年后的今天,每年仍然能够出现与 awk 相关的新书。因此,我们可以相对保守地假设:一项针对命令行才能的投资在任何新近的时间内都不会贬值。

我们将会涉及以下内容

  • ICONV

  • HEAD

  • TR

  • WC

  • SPLIT

  • SORT & UNIQ

  • CUT

  • PASTE

  • JOIN

  • GREP

  • SED

  • AWK

ICONV(用来转换文件的编码方式)

文件编码可能是比较棘手的。现在的多数文件都是 UTF-8 编码,然而有时候我们拿到的文件并不是这个格式的。这可能导致交换编码格式时的一些不靠谱的尝试。这里,iconv 是一个拯救者,它能以一种编码的文本为输入,输出另一种编码的文本。

# Converting -f (from) latin1 (ISO-8859-1)
# -t (to) standard UTF_8
iconv -f ISO-8859-1 -t UTF-8 < input.txt > output.txt

可选参数

  • iconv -l 列出所有已知的编码字符集合

  • iconv -c 忽略不能转换的非法字符,静默地丢弃

HEAD(用于显示文件的开头内容)

如果你是一个频繁使用 Pandas 的用户,那么你会比较熟悉 df.head()。默认情况下 head 命令显示文件的前 10 行内容,当然我们也可以选择不同的参数确定打印的行数或字符数。

# Prints out first 10 lines
head filename.csv
# Print first 3 lines
head -n 3 filename.csv

可选参数

  • head -n <数字> 打印特定数目的行数

  • head -c <字符数> 打印特定数目的字符

TR(对字符进行替换、压缩和删除)

tr 与转译比较类似,它的强大能力是文件清理的主要工具。例如以下交换文件中的分隔符:

# Converting a tab delimited file into commas
cat tab_delimited.txt | tr "\\t" "," comma_delimited.csv

tr 的另一个功能是由我们控制的内置 [:class:] 参数,这些用法包括:

  • [:alnum:] 所有的字母和数字

  • [:alpha:] 所有的字母

  • [:blank:] 所有的水平空格

  • [:cntrl:] 所有的控制字符(非打印)

  • [:digit:] 所有的数字

  • [:graph:] 所有的可打印字符,不包含空格

  • [:lower:] 所有的小写字母

  • [:print:] 所有的可打印字符,包含空格

  • [:punct:] 所有的标点符号

  • [:space:] 所有的水平或垂直空格

  • [:upper:] 所有的大写字母

  • [:xdigit:] 所有的十六进制字符

我们可以将它们连接在一起组成强大的程序。下面是一个基本的字数统计程序,我们可以用它来检查 README 文档。

cat README.md | tr "[:punct:][:space:]" "\n" | tr "[:upper:]" "[:lower:]" | grep . | sort | uniq -c | sort -nr

使用基本正则表达式的另一个例子是:

# Converting all upper case letters to lower case
cat filename.csv | tr '[A-Z]' '[a-z]'

可选参数

  • tr -d 删除字符

  • tr -s 压缩字符(将连续重复的字符用一个字符表示)

  • \b 空格

  • \f 换页符

  • \v 垂直制表符

  • \NNN 八进制字符 NNN

WC(用来计数的命令)

它的值主要来自于 -l flag,它会提供文档的行数。

# Will return number of lines in CSV
wc -l gigantic_comma.csv

这个工具可以方便地确认各种命令的输出。所以,如果我们转换了文件中的分隔符,那么运行 wc -l 就可以查看总行数是不是相同,不同就是出了问题。

可选参数

  • wc -c 打印 Bytes 数目

  • wc -m 打印出字符数

  • wc -L 打印出最长行的字符数

  • wc -w 打印出单词数目

SPLIT(把一个大文件分割成小文件的命令)

文件大小可以使用这个命令大幅度改变。根据任务的不同,分割文件可能会有所帮助,所以就有了 split 命令。split 的基本语法如下:

# We will split our CSV into new_filename every 500 lines
split -l 500 filename.csv new_filename_
# filename.csv
# ls output
# new_filename_aaa
# new_filename_aab
# new_filename_aac

两个怪异的地方是命名约定和文件的扩展名。后缀约定可以通过-d 标志来约定为数字。为了添加文件扩展名,您需要运行下面的 find 命令。它会改变当前路径下的所有文件名,给每个文件后面扩展.csv,所以,谨慎使用。

find . -type f -exec mv '{}' '{}'.csv \;
# ls output
# filename.csv.csv
# new_filename_aaa.csv
# new_filename_aab.csv
# new_filename_aac.csv

可选参数

  • split -b 通过确定的字节大小分割

  • split -a 生成长度为 N 的后缀

  • split -x 使用十六进制后缀分割

SORT & UNIQ(sort:文件排序;uniq:报告或忽略文件中的重复行,与 sort 结合使用)

这两个命令提供了唯一的单词计数,这是因为 uniq 仅仅在重复的相邻行上运行。因此,这就是在输出之前进行排序的原因。一个有趣的注意事项是:sort -u 会与 sort file.txt | uniq 有着相同的结果。

对于数据科学家而言,排序具是一种潜在有用的能力:即基于特定列对整个 CSV 文件进行排序的能力。

# Sorting a CSV file by the second column alphabetically
sort -t, -k2 filename.csv
# Numerically
sort -t, -k2n filename.csv
# Reverse order
sort -t, -k2nr filename.csv

这里的-t 选项将逗号作为我们的分隔符,通常会采用空格或者制表符。此外,-k flag 用于指定关键词。

可选参数

  • sort -f 忽略大小写

  • sort -r 以相反的顺序排序

  • sort -R 乱序

  • uniq -c 统计出现的次数

  • uniq -d 仅仅打印重复行

CUT(cut 命令用来显示行中的指定部分,删除文件中指定字段。)

cut 用于删除列。举例来说,如果我们要删除第一列和第三列,可以使用 cut:

cut -d, -f 1,3 filename.csv

选择除了第一列之外的每一列:

cut -d, -f 2- filename.csv

与其他命令结合使用的时候,cut 作为一个过滤器:

# Print first 10 lines of column 1 and 3, where "some_string_value" is present
head filename.csv | grep "some_string_value" | cut -d, -f 1,3

找到第二列中某个特定值出现的次数:

cat filename.csv | cut -d, -f 2 | sort | uniq | wc -l
# Count occurences of unique values, limiting to first 10 results
cat filename.csv | cut -d, -f 2 | sort | uniq -c | head

PASTE(用于将多个文件按照列队列进行合并)

paste 是一个简洁命令,具有一个有趣的功能。如果您有两个需要合并的文件,并且它们已经排序,paste 能够实现这些功能。

# names.txt
adam
john
zach
# jobs.txt
lawyer
youtuber
developer
# Join the two into a CSV
paste -d ',' names.txt jobs.txt > person_data.txt
# Output
adam,lawyer
john,youtuber
zach,developer

更具 SQL 风格的变体,请参见下文。

JOIN(连接并合并文件)

join 命令是一个简单的、拟正切的 SQL。最大的区别在于 join 将返回所有列,并且只能在一个字段上进行匹配。默认情况下,join 将尝试使用第一列作为匹配键。对于不同的结果,必须使用以下语法:

# Join the first file (-1) by the second column
# and the second file (-2) by the first
join -t, -1 2 -2 1 first_file.txt second_file.txt

标准 join 是内部连接。但是,外部连接也可以通过- a flag 实现。另一个值得注意的现象是- e 标志,如果找到丢失的字段,它可以用来替换值。

# Outer join, replace blanks with NULL in columns 1 and 2
# -o which fields to substitute - 0 is key, 1.1 is first column, etc...
join -t, -1 2 -a 1 -a2 -e ' NULL' -o '0,1.1,2.2' first_file.txt second_file.txt

虽然不是最便于用户使用的命令,但是绝望的时候自有绝望的措施。

可选参数

  • join -a 打印不能匹配的行

  • join -e 替换丢失的输入字段

  • join -j 等价于 -1 FIELD -2 FIELD

GREP(这是一种强大的文本搜索工具)

全面搜索正则表达式并打印(grep),这很可能是最出名的命令。grep 有很多强大的能力,尤其是在大型代码库中以我们自己的方式寻找字段。在数据科学领域,它充当着其它命令的细化机制。

# Recursively search and list all files in directory containing 'word'
grep -lr 'word' .
# List number of files containing word
grep -lr 'word' . | wc -l

统计包含单词/模式的总行数

grep -c 'some_value' filename.csv
# Same thing, but in all files in current directory by file name
grep -c 'some_value' *

使用\|运算子进行多值操作

grep "first_value\|second_value" filename.csv

可选参数

  • alias grep="grep --color=auto" 使 grep 色彩化

  • grep -E 使用扩展的正则表达式

  • grep -w 只匹配全字符

  • grep -l 打印出匹配的文件名

  • grep -v 反转匹配

SED(流编辑器)

sed 是一个逐行运行的流编辑器。它擅长替换,但是也可以用于所有的重构(refactoring)。

最基本的 sed 命令包含 s/old/new/g。这指的是搜索旧值,并用新值替换。如果没有/gour 命令,终端将在第一次出现这个值之后停止。

为了快速体验这种能力,让我们来举个例子。若我们有以下文件:

balance,name
$1,000,john
$2,000,jack

我们想做的第一件事就是去掉美元符号。-i flag 指的是位置,''标志指的是零长度的文件扩展名,然后覆盖初始文件。理想情况下,我们可以单独测试其中的每一个,然后输出到新文件。

sed -i '' 's/\$//g' data.txt
# balance,name
# 1,000,john
# 2,000,jack

接下来,我们处理 balance 中的逗号

sed -i '' 's/\([0-9]\),\([0-9]\)/\1\2/g' data.txt
# balance,name
# 1000,john
# 2000,jack

AWK(不仅仅是一个命令)

awk 不仅仅是一个简单的命令:它是一种成熟的语言。在本文所涉及的所有内容中,awk 是最酷的。如果你发现自己对 awk 印象深刻,也可以找更多的资源。

 awk 的用例包括:

  • 文本处理

  • 格式化文本报告

  • 执行数学运算

  • 执行字符串操作

最新版的 awk 可以与 grep 并行使用。

awk '/word/' filename.csv

或者使用一些技巧将 grep 和 cut 结合起来。这里,对于所有我们要查找的 word 行,awk 打印第三列和第四列和分隔符。-F,仅将分隔符改为逗号。

awk -F, '/word/ { print $3 "\t" $4 }' filename.csv

awk 内置了许多优秀的变量。例如,NF -字段数,NR -记录数。要在文件中获取第五十三条记录,代码如下:

awk -F, 'NR == 53' filename.csv

一个额外的功能是基于一个或多个值进行过滤的能力。下面的第一个示例将打印第一列等于 string 记录的行数和列数。

awk -F, ' $1 == "string" { print NR, $0 } ' filename.csv
# Filter based off of numerical value in second column
awk -F, ' $2 == 1000 { print NR, $0 } ' filename.csv

多数值表达式:

# Print line number and columns where column three greater
# than 2005 and column five less than one thousand
awk -F, ' $3 >= 2005 && $5 <= 1000 { print NR, $0 } ' filename.csv

对第三列求和:

awk -F, '{ x+=$3 } END { print x }' filename.csv

对第一列等于『something』的所有行,对它们的第三列求和。

awk -F, '$1 == "something" { x+=$3 } END { print x }' filename.csv

得到文件的维度:

awk -F, 'END { print NF, NR }' filename.csv
# Prettier version
awk -F, 'BEGIN { print "COLUMNS", "ROWS" }; END { print NF, NR }' filename.csv

打印出现两次的行:

awk -F, '++seen[$0] == 2' filename.csv

删除重复的行:

# Consecutive lines
awk 'a !~ $0; {a=$0}']
# Nonconsecutive lines
awk '! a[$0]++' filename.csv
# More efficient
awk '!($0 in a) {a[$0];print}

使用内置函数 gsub() 替换多值:

awk '{gsub(/scarlet|ruby|puce/, "red"); print}'

这个 awk 命令将合并多个 CSV 文件,忽略文件头,然后将其附加到末尾。

awk 'FNR==1 && NR!=1{next;}{print}' *.csv > final_file.csv

需要缩减大量文件?awk 可以在 sed 的帮助下处理这个问题。具体而言,这个命令可以基于行数将 一个大文件拆分为多个小文件。

sed '1d;$d' filename.csv | awk 'NR%NUMBER_OF_LINES==1{x="filename-"++i".csv";}{print > x}'
# Example: splitting big_data.csv into data_(n).csv every 100,000 lines
sed '1d;$d' big_data.csv | awk 'NR%100000==1{x="data_"++i".csv";}{print > x}'

结语

命令行拥有无穷无尽的能力。本文中介绍的命令足以让您在短时间内从小白变成高手。除了这些内容之外,还有许多用于日常数据处理的程序需要考虑。如果你想深入了解命令行数据科学,可以多找一些详细的资源。


原文链接:

https://medium.com/@kadek/command-line-tricks-for-data-scientists-c98e0abe5da

工程
2
相关数据
参数技术
parameter

在数学和统计学裡,参数(英语:parameter)是使用通用变量来建立函数和变量之间关系(当这种关系很难用方程来阐述时)的一个数量。

重构技术
Refactoring

代码重构(英语:Code refactoring)指对软件代码做任何更动以增加可读性或者简化结构而不影响输出结果。 软件重构需要借助工具完成,重构工具能够修改代码同时修改所有引用该代码的地方。在极限编程的方法学中,重构需要单元测试来支持。

推荐文章
初学机器学习的你,是否掌握了这样的Linux技巧?
机器之心1
前端慌不慌?用深度学习自动生成HTML代码
机器之心2
在Python和TensorFlow上构建Word2Vec词嵌入模型
刘晓坤4
返回顶部